当前位置: X-MOL 学术Acta Astronaut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of bubble structure in a microchannel under microgravity conditions: Effects of discontinuous wettability with dynamic contact angle
Acta Astronautica ( IF 3.1 ) Pub Date : 2022-09-28 , DOI: 10.1016/j.actaastro.2022.09.048
S Mahmood Mousavi , Bok Jik Lee

A thorough understanding of the dynamics of bubble/liquid two-phase flows under microgravity conditions is essential for achieving efficient heat transfer between spacecraft and space stations. This paper examined the influence of the discontinuous wettability of a microchannel's wall on bubble structure movement under microgravity conditions. The volume-of-fluid methodology involving a dynamic contact angle code was employed by considering wall-adhesion equations to predict the form of the bubble/liquid interface at and near the wall. The flow field's governing equations were numerically solved utilizing the finite volume method. Initially, the results were compared to previously reported data for validation. Subsequently, the effects of discontinuous wettability with different configurations on the structure of bubbles were investigated; new insights were obtained into the size and shape of generated bubbles, as well as the slug length as a function of the wall wettability. The results showed that for a uniformly hydrophilic surface, the bubble had a concave shape under microgravity conditions, while for a uniformly superhydrophobic surface, the bubble had a convex shape. A microchannel wall surface with discontinuous wettability led to the generation of an asymmetric bubble, a variation in slug length, changes in the bubble's length and shape, and a continuous phase structure. Furthermore, variations in the wall wettability caused the flow upstream to vary and affected all four stages of bubble generation, namely lag, filling, necking, and the starting point of detachment.



中文翻译:

微重力条件下微通道中气泡结构的研究:不连续润湿性与动态接触角的影响

彻底了解微重力条件下气泡/液体两相流的动力学对于实现航天器和空间站之间的有效热传递至关重要。本文研究了微重力条件下微通道壁的不连续润湿性对气泡结构运动的影响。通过考虑壁粘附方程,采用涉及动态接触角代码的流体体积方法来预测壁处和壁附近的气泡/液体界面的形式。利用有限体积法对流场的控制方程进行数值求解。最初,将结果与先前报告的数据进行比较以进行验证。随后,研究了不同构型的不连续润湿性对气泡结构的影响;对生成的气泡的大小和形状以及作为壁润湿性函数的段塞长度获得了新的见解。结果表明,对于均匀亲水表面,气泡在微重力条件下呈凹形,而对于均匀超疏水表面,气泡呈凸形。具有不连续润湿性的微通道壁表面导致不对称气泡的产生、段塞长度的变化、气泡长度和形状的变化以及连续相结构。此外,壁面润湿性的变化导致上游流动发生变化并影响气泡产生的所有四个阶段,即滞后、填充、颈缩和脱离的起点。以及作为壁润湿性函数的段塞长度。结果表明,对于均匀亲水表面,气泡在微重力条件下呈凹形,而对于均匀超疏水表面,气泡呈凸形。具有不连续润湿性的微通道壁表面导致不对称气泡的产生、段塞长度的变化、气泡长度和形状的变化以及连续相结构。此外,壁面润湿性的变化导致上游流动发生变化并影响气泡产生的所有四个阶段,即滞后、填充、颈缩和脱离的起点。以及作为壁润湿性函数的段塞长度。结果表明,对于均匀亲水表面,气泡在微重力条件下呈凹形,而对于均匀超疏水表面,气泡呈凸形。具有不连续润湿性的微通道壁表面导致不对称气泡的产生、段塞长度的变化、气泡长度和形状的变化以及连续相结构。此外,壁面润湿性的变化导致上游流动发生变化并影响气泡产生的所有四个阶段,即滞后、填充、颈缩和脱离的起点。而对于均匀的超疏水表面,气泡具有凸面形状。具有不连续润湿性的微通道壁表面导致不对称气泡的产生、段塞长度的变化、气泡长度和形状的变化以及连续相结构。此外,壁面润湿性的变化导致上游流动发生变化并影响气泡产生的所有四个阶段,即滞后、填充、颈缩和脱离的起点。而对于均匀的超疏水表面,气泡具有凸面形状。具有不连续润湿性的微通道壁表面导致不对称气泡的产生、段塞长度的变化、气泡长度和形状的变化以及连续相结构。此外,壁面润湿性的变化导致上游流动发生变化并影响气泡产生的所有四个阶段,即滞后、填充、颈缩和脱离的起点。

更新日期:2022-09-30
down
wechat
bug