当前位置: X-MOL 学术IEEE Trans. Elect. Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Degradation Behavior and Mechanism of GaN HEMTs With P-Type Gate in the Third Quadrant Under Repetitive Surge Current Stress
IEEE Transactions on Electron Devices ( IF 2.9 ) Pub Date : 9-1-2022 , DOI: 10.1109/ted.2022.3200928
Xiaoming Wang 1 , Wanjun Chen 1 , Ruize Sun 1 , Chao Liu 1 , Yun Xia 1 , Yajie Xin 1 , Xiaorui Xu 1 , Fangzhou Wang 1 , Xinghuan Chen 1 , Yiqiang Chen 2 , Bo Zhang 1
Affiliation  

In this article, the degradation behavior and mechanism of GaN high-electron-mobility transistors (HEMTs) with p-type gate in the third quadrant under repetitive surge current stress are studied. The electrical properties of devices under various surge current conditions are investigated. It can be found that the turning point exists in the degradation trend of threshold voltage ( VTH{V}_{\text{TH}} ), gate leakage current ( Igss{I}_{\text{gss}} ), and OFF-state drain leakage current ( Idss{I}_{\text{dss}} ). The turning phenomenon is related to the peak value of the surge current ( Ipeak{I}_{\text{peak}} ) and the stress cycle. We propose that two competing mechanisms that take place on carrier transport paths cause the degradation behavior. When Ipeak{I}_{\text{peak}} is low, the electron trapping effect is the main degradation mechanism. As Ipeak{I}_{\text{peak}} exceeds a certain value, as the stress cycle increases, the hole trapping effect will be greatly enhanced and even cause the reversal of the degradation rate of VTH{V}_{\text{TH}} , Igss{I}_{\text{gss}} , and Idss{I}_{\text{dss}} . Furthermore, at higher Ipeak{I}_{\text{peak}} , new donor traps can be generated in the gate, causing the permanent and negative shift of VTH{V}_{\text{TH}} . Based on the simulation, further experiments, and VTH{V}_{\text{TH}} recovery characteristics, the competing mechanism is confirmed. These results provide deep insights and references for the reliable applications of GaN HEMTs.

中文翻译:


第三象限P型栅极GaN HEMT在重复浪涌电流应力下的退化行为及机制



本文研究了第三象限p型栅极GaN高电子迁移率晶体管(HEMT)在重复浪涌电流应力下的退化行为和机制。研究了器件在各种浪涌电流条件下的电气特性。可以发现,阈值电压(VTH{V}_{\text{TH}})、栅极漏电流(Igss{I}_{\text{gss}})的退化趋势存在转折点,关态漏极漏电流 ( Idss{I}_{\text{dss}} )。翻转现象与浪涌电流峰值( Ipeak{I}_{\text{peak}} )和应力周期有关。我们提出载流子传输路径上发生的两种竞争机制导致了退化行为。当 Ipeak{I}_{\text{peak}} 较低时,电子捕获效应是主要的退化机制。当Ipeak{I}_{\text{peak}}超过一定值时,随着应力循环的增加,空穴捕获效应将大大增强,甚至导致VTH{V}_{\text的退化速率逆转{TH}} 、 Igss{I}_{\text{gss}} 和 Idss{I}_{\text{dss}} 。此外,在较高的 Ipeak{I}_{\text{peak}} 下,栅极中会产生新的施主陷阱,导致 VTH{V}_{\text{TH}} 永久负移。基于模拟、进一步的实验和 VTH{V}_{\text{TH}} 恢复特性,竞争机制得到确认。这些结果为GaN HEMT的可靠应用提供了深刻的见解和参考。
更新日期:2024-08-26
down
wechat
bug