当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessing performance degradation induced by thermal cycling in solid oxide cells
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2022-09-26 , DOI: 10.1016/j.enconman.2022.116239
Yang Wang , Chengru Wu , Siyuan Zhao , Zengjia Guo , Bingfeng Zu , Minfang Han , Qing Du , Meng Ni , Kui Jiao

Commercialization of solid oxide cells (SOCs) is hindered by their poor durability. In particular, electrode–electrolyte delamination due to the mismatch in thermal expansion coefficients under thermal cycling is one of the main sources of performance degradation during the long-term SOCs operation. We establish a macroscopic mathematical model describing the delamination propagation inside SOCs under thermal cycling. The extent to which excessive stresses at different sides affect delamination is assessed. Then the change in delamination length with different thermal cycles and the influence factors on delamination is quantified by using a cohesion zone model. Accordingly, control strategies that can effectively inhibit delamination are further proposed. In addition, a separate computational fluid dynamics model based on the results of the cohesion zone model is developed to evaluate the mechanism and extent of delamination on the electrochemical performance degradation. Based on the results of the above model, after 10 thermal cycles, the electrode–electrolyte delamination can reach 40.7%, resulting in a 37.3% loss of electrochemical performance. Furthermore, electrochemical analysis demonstrates that, regardless of which side the delamination occurs on, it affects the electrochemical reaction within the electrode at the same location on the opposite side by hindering the electron and ion transport paths.



中文翻译:

评估固体氧化物电池中由热循环引起的性能下降

固体氧化物电池 (SOC) 的商业化因其耐用性差而受到阻碍。特别是,由于热循环下的热膨胀系数不匹配导致的电极-电解质分层是长期 SOC 运行期间性能下降的主要来源之一。我们建立了一个宏观数学模型,描述了热循环下 SOC 内部的分层传播。评估不同侧的过度应力影响分层的程度。然后使用凝聚区模型量化了不同热循环下分层长度的变化以及分层的影响因素。因此,进一步提出了可以有效抑制分层的控制策略。此外,基于凝聚区模型的结果开发了一个单独的计算流体动力学模型,以评估分层对电化学性能下降的机制和程度。根据上述模型的结果,经过10次热循环后,电极-电解质分层可达40.7%,导致电化学性能损失37.3%。此外,电化学分析表明,无论分层发生在哪一侧,它都会通过阻碍电子和离子传输路径来影响另一侧相同位置的电极内的电化学反应。电极-电解质分层可达40.7%,导致电化学性能损失37.3%。此外,电化学分析表明,无论分层发生在哪一侧,它都会通过阻碍电子和离子传输路径来影响另一侧相同位置的电极内的电化学反应。电极-电解质分层可达40.7%,导致电化学性能损失37.3%。此外,电化学分析表明,无论分层发生在哪一侧,它都会通过阻碍电子和离子传输路径来影响另一侧相同位置的电极内的电化学反应。

更新日期:2022-09-26
down
wechat
bug