当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of a Flexible, Zn-Selective Protein Scaffold that Displays Anti-Irving–Williams Behavior
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2022-09-26 , DOI: 10.1021/jacs.2c08050
Tae Su Choi 1 , F Akif Tezcan 1
Affiliation  

Selective metal binding is a key requirement not only for the functions of natural metalloproteins but also for the potential applications of artificial metalloproteins in heterogeneous environments such as cells and environmental samples. The selection of transition-metal ions through protein design can, in principle, be achieved through the appropriate choice and the precise positioning of amino acids that comprise the primary metal coordination sphere. However, this task is made difficult by the intrinsic flexibility of proteins and the fact that protein design approaches generally lack the sub-Å precision required for the steric selection of metal ions. We recently introduced a flexible/probabilistic protein design strategy (MASCoT) that allows metal ions to search for optimal coordination geometry within a flexible, yet covalently constrained dimer interface. In an earlier proof-of-principle study, we used MASCoT to generate an artificial metalloprotein dimer, (AB)2, which selectively bound CoII and NiII over CuII (as well as other first-row transition-metal ions) through the imposition of a rigid octahedral coordination geometry, thus countering the Irving–Williams trend. In this study, we set out to redesign (AB)2 to examine the applicability of MASCoT to the selective binding of other metal ions. We report here the design and characterization of a new flexible protein dimer, B2, which displays ZnII selectivity over all other tested metal ions including CuII both in vitro and in cellulo. Selective, anti-Irving–Williams ZnII binding by B2 is achieved through the formation of a unique trinuclear Zn coordination motif in which His and Glu residues are rigidly placed in a tetrahedral geometry. These results highlight the utility of protein flexibility in the design and discovery of selective binding motifs.

中文翻译:

显示反 Irving-Williams 行为的灵活、Zn 选择性蛋白质支架的设计

选择性金属结合不仅是天然金属蛋白功能的关键要求,也是人工金属蛋白在异质环境(如细胞和环境样品)中的潜在应用的关键要求。原则上,可以通过蛋白质设计选择过渡金属离子,可以通过适当的选择和构成主要金属配位球体的氨基酸的精确定位来实现。然而,由于蛋白质固有的灵活性以及蛋白质设计方法通常缺乏金属离子位阻选择所需的亚 Å 精度这一事实,这项任务变得困难重重。我们最近引入了一种灵活/概率蛋白质设计策略 (MASCoT),它允许金属离子在灵活的、但共价约束的二聚体界面。在早期的原理验证研究中,我们使用 MASCoT 生成人工金属蛋白二聚体 (AB)2,它通过施加刚性八面体配位几何选择性地结合 Co II和 Ni II而不是Cu II(以及其他第一行过渡金属离子),从而抵消了 Irving-Williams 趋势。在这项研究中,我们着手重新设计 (AB) 2以检查 MASCoT 对其他金属离子选择性结合的适用性。我们在这里报告了一种新的柔性蛋白质二聚体 B 2的设计和表征,它在体外纤维素中显示出优于所有其他测试金属离子(包括 Cu II )的 Zn II选择性。选择性,抗 Irving-Williams Zn IIB 2的结合是通过形成独特的三核 Zn 配位基序实现的,在该基序中,His 和 Glu 残基牢固地置于四面体几何结构中。这些结果突出了蛋白质灵活性在设计和发现选择性结合基序中的效用。
更新日期:2022-09-26
down
wechat
bug