当前位置: X-MOL 学术arXiv.cond-mat.soft › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transmission of a Seismic Wave generated by impacts on Granular Asteroids
arXiv - PHYS - Soft Condensed Matter Pub Date : 2022-09-23 , DOI: arxiv-2209.11353
Paul SánchezCCAR University of Colorado Boulder, Daniel J. ScheeresAES University of Colorado Boulder, Alice C. QuillenUniversity of Rochester

In this paper we use a Soft-Sphere Discrete Element method code to simulate the transmission and study the attenuation of a seismic wave. Then, we apply our findings to the different space missions that have had to touch the surface of different small bodies. Additionally, we do the same in regards to the seismic wave generated by the hypervelocity impacts produced by the DART and Hayabusa2 missions once the shock wave transforms into a seismic wave. We find that even at very low pressures, such as those present in the interior of asteroids, the seismic wave speed can still be on the order of hundreds of m/s depending on the velocity of the impact that produces the wave. As expected from experimental measurements, our results show that wave velocity is directly dependent on $P^{1/6}$, where $P$ is the total pressure (confining pressure plus wave induced pressure). Regardless of the pressure of the system and the velocity of the impact (in the investigated range), energy dissipation is extremely high. These results provide us with a way to anticipate the extent to which a seismic wave could have been capable of moving some small particles on the surface of a small body upon contact with a spacecraft. Additionally, this rapid energy dissipation would imply that even hypervelocity impacts should perturb only the external layer of a self-gravitating aggregate on which segregation and other phenomena could take place. This would in turn produce a layered structure of which some evidence has been observed

中文翻译:

对粒状小行星的撞击产生的地震波的传输

在本文中,我们使用软球离散元方法代码来模拟传输并研究地震波的衰减。然后,我们将我们的发现应用于必须接触不同小天体表面的不同太空任务。此外,一旦冲击波转变为地震波,我们对 DART 和 Hayabusa2 任务产生的超高速撞击产生的地震波也采取了同样的措施。我们发现,即使在非常低的压力下,例如存在于小行星内部的压力,地震波的速度仍然可以达到数百米/秒,具体取决于产生波的撞击速度。正如实验测量所预期的那样,我们的结果表明波速直接取决于 $P^{1/6}$, 其中 $P$ 是总压力(围压加上波浪诱导压力)。无论系统压力和冲击速度如何(在研究范围内),能量耗散都非常高。这些结果为我们提供了一种方法来预测地震波在与航天器接触时能够在多大程度上移动小物体表面上的一些小粒子。此外,这种快速的能量耗散意味着即使是超高速撞击也应该只扰动自引力聚集体的外层,在该外层上可能发生分离和其他现象。这反过来会产生一个分层结构,其中一些证据已经被观察到 能量消耗非常高。这些结果为我们提供了一种方法来预测地震波在与航天器接触时能够在多大程度上移动小物体表面上的一些小粒子。此外,这种快速的能量耗散意味着即使是超高速撞击也应该只扰动自引力聚集体的外层,在该外层上可能发生分离和其他现象。这反过来会产生一个分层结构,其中一些证据已经被观察到 能量消耗非常高。这些结果为我们提供了一种方法来预测地震波在与航天器接触时能够在多大程度上移动小物体表面上的一些小粒子。此外,这种快速的能量耗散意味着即使是超高速撞击也应该只扰动自引力聚集体的外层,在该外层上可能发生分离和其他现象。这反过来会产生一个分层结构,其中一些证据已经被观察到 这种快速的能量耗散意味着即使是超高速撞击也应该只扰动自引力聚集体的外层,在该外层上可能发生分离和其他现象。这反过来会产生一个分层结构,其中一些证据已经被观察到 这种快速的能量耗散意味着即使是超高速撞击也应该只扰动自引力聚集体的外层,在该外层上可能发生分离和其他现象。这反过来会产生一个分层结构,其中一些证据已经被观察到
更新日期:2022-09-26
down
wechat
bug