当前位置: X-MOL 学术arXiv.cond-mat.mtrl-sci › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Benchmarking theoretical electronic structure methods with photoemission orbital tomography
arXiv - PHYS - Materials Science Pub Date : 2022-09-23 , DOI: arxiv-2209.11516
Anja Haags, Xiaosheng Yang, Larissa Egger, Dominik Brandstetter, Hans Kirschner, Alexander Gottwald, Mathias Richter, Georg Koller, Michael G. Ramsey, François C. Bocquet, Serguei Soubatch, F. Stefan Tautz, Peter Puschnig

In the past decade, photoemission orbital tomography (POT) has evolved into a powerful tool to investigate the electronic structure of organic molecules adsorbed on (metallic) surfaces. By measuring the angular distribution of photoelectrons as a function of binding energy and making use of the momentum-space signature of molecular orbitals, POT leads to an orbital-resolved picture of the electronic density of states at the organic/metal interface. In this combined experimental and theoretical work, we apply POT to the prototypical organic $\pi$-conjugated molecule bisanthene (C$_{28}$H$_{14}$) which forms a highly oriented monolayer on a Cu(110) surface. Experimentally, we identify an unprecedented number of 13 $\pi$ and 12 $\sigma$ orbitals of bisanthene and measure their respective binding energies and spectral lineshapes at the bisanthene/Cu(110) interface. Theoretically, we perform density functional calculations for this interface employing four widely used exchange-correlation functionals from the families of the generalized gradient approximations as well as global and range-separated hybrid functionals. By analyzing the electronic structure in terms of orbital-projected density of states, we arrive at a detailed orbital-by-orbital assessment of theory vs. experiment. This allows us to benchmark the performance of the investigated functionals with regards to their capability of accounting for the orbital energy alignment at organic/metal interfaces.

中文翻译:

用光电发射轨道断层扫描对理论电子结构方法进行基准测试

在过去的十年中,光发射轨道断层扫描 (POT) 已发展成为研究吸附在(金属)表面上的有机分子的电子结构的有力工具。通过测量光电子的角分布作为结合能的函数并利用分子轨道的动量空间特征,POT 产生了有机/金属界面处电子态密度的轨道分辨图像。在这项结合实验和理论的工作中,我们将 POT 应用于原型有机 $\pi$-共轭分子双蒽 (C$_{28}$H$_{14}$),它在 Cu(110 ) 表面。实验上,我们确定了数量空前的 13 个 $\pi$ 和 12 个 $\sigma$ 轨道,并在双蒽/Cu(110) 界面测量了它们各自的结合能和光谱线形。从理论上讲,我们使用来自广义梯度近似家族的四种广泛使用的交换相关泛函以及全局和范围分离的混合泛函对该接口进行密度泛函计算。通过根据轨道投影状态密度分析电子结构,我们得出了理论与实验的详细轨道评估。这使我们能够对所研究的功能的性能进行基准测试,以了解它们在有机/金属界面处的轨道能量对齐的能力。我们使用来自广义梯度近似系列以及全局和范围分离的混合泛函的四个广泛使用的交换相关泛函对该接口执行密度泛函计算。通过根据轨道投影状态密度分析电子结构,我们得出了理论与实验的详细轨道评估。这使我们能够对所研究的功能的性能进行基准测试,以了解它们在有机/金属界面处的轨道能量对齐的能力。我们使用来自广义梯度近似系列以及全局和范围分离的混合泛函的四个广泛使用的交换相关泛函对该接口执行密度泛函计算。通过根据轨道投影状态密度分析电子结构,我们得出了理论与实验的详细轨道评估。这使我们能够对所研究的功能的性能进行基准测试,以了解它们在有机/金属界面处的轨道能量对齐的能力。通过根据轨道投影状态密度分析电子结构,我们得出了理论与实验的详细轨道评估。这使我们能够对所研究的功能的性能进行基准测试,以了解它们在有机/金属界面处的轨道能量对齐的能力。通过根据轨道投影状态密度分析电子结构,我们得出了理论与实验的详细轨道评估。这使我们能够对所研究的功能的性能进行基准测试,以了解它们在有机/金属界面处的轨道能量对齐的能力。
更新日期:2022-09-26
down
wechat
bug