当前位置: X-MOL 学术arXiv.cond-mat.dis-nn › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Navigating the noise-depth tradeoff in adiabatic quantum circuits
arXiv - PHYS - Disordered Systems and Neural Networks Pub Date : 2022-09-22 , DOI: arxiv-2209.11245
Daniel Azses, Maxime Dupont, Bram Evert, Matthew J. Reagor, Emanuele G. Dalla Torre

Adiabatic quantum algorithms solve computational problems by slowly evolving a trivial state to the desired solution. On an ideal quantum computer, the solution quality improves monotonically with increasing circuit depth. By contrast, increasing the depth in current noisy computers introduces more noise and eventually deteriorates any computational advantage. What is the optimal circuit depth that provides the best solution? Here, we address this question by investigating an adiabatic circuit that interpolates between the paramagnetic and ferromagnetic ground states of the one-dimensional quantum Ising model. We characterize the quality of the final output by the density of defects $d$, as a function of the circuit depth $N$ and noise strength $\sigma$. We find that $d$ is well-described by the simple form $d_\mathrm{ideal}+d_\mathrm{noise}$, where the ideal case $d_\mathrm{ideal}\sim N^{-1/2}$ is controlled by the Kibble-Zurek mechanism, and the noise contribution scales as $d_\mathrm{noise}\sim N\sigma^2$. It follows that the optimal number of steps minimizing the number of defects goes as $\sim\sigma^{-4/3}$. We implement this algorithm on a noisy superconducting quantum processor and find that the dependence of the density of defects on the circuit depth follows the predicted non-monotonous behavior and agrees well with noisy simulations. Our work allows one to efficiently benchmark quantum devices and extract their effective noise strength $\sigma$.

中文翻译:

在绝热量子电路中导航噪声深度权衡

绝热量子算法通过将平凡状态缓慢演变为所需解决方案来解决计算问题。在理想的量子计算机上,解决方案质量随着电路深度的增加而单调提高。相比之下,在当前嘈杂的计算机中增加深度会引入更多的噪声,并最终降低任何计算优势。提供最佳解决方案的最佳电路深度是多少?在这里,我们通过研究在一维量子伊辛模型的顺磁和铁磁基态之间插值的绝热电路来解决这个问题。我们通过缺陷密度 $d$ 来表征最终输出的质量,作为电路深度 $N$ 和噪声强度 $\sigma$ 的函数。我们发现 $d$ 可以用 $d_\mathrm{ideal}+d_\mathrm{noise}$ 的简单形式很好地描述,其中理想情况 $d_\mathrm{ideal}\sim N^{-1/2}$ 由 Kibble-Zurek 机制控制,噪声贡献比例为 $d_\mathrm{noise}\sim N\sigma^ 2 美元。因此,最小化缺陷数量的最佳步骤数为 $\sim\sigma^{-4/3}$。我们在嘈杂的超导量子处理器上实现该算法,发现缺陷密度对电路深度的依赖性遵循预测的非单调行为,并且与嘈杂的模拟非常吻合。我们的工作允许人们有效地对量子设备进行基准测试并提取它们的有效噪声强度 $\sigma$。因此,最小化缺陷数量的最佳步骤数为 $\sim\sigma^{-4/3}$。我们在嘈杂的超导量子处理器上实现该算法,发现缺陷密度对电路深度的依赖性遵循预测的非单调行为,并且与嘈杂的模拟非常吻合。我们的工作允许人们有效地对量子设备进行基准测试并提取它们的有效噪声强度 $\sigma$。因此,最小化缺陷数量的最佳步骤数为 $\sim\sigma^{-4/3}$。我们在嘈杂的超导量子处理器上实现该算法,发现缺陷密度对电路深度的依赖性遵循预测的非单调行为,并且与嘈杂的模拟非常吻合。我们的工作允许人们有效地对量子设备进行基准测试并提取它们的有效噪声强度 $\sigma$。
更新日期:2022-09-26
down
wechat
bug