当前位置: X-MOL 学术Funct. Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-resolution 3D forest structure explains ecomorphological trait variation in assemblages of saproxylic beetles
Functional Ecology ( IF 5.2 ) Pub Date : 2022-09-23 , DOI: 10.1111/1365-2435.14188
Lukas Drag 1, 2 , Ryan C Burner 3, 4 , Jörg G Stephan 5 , Tone Birkemoe 4 , Inken Doerfler 6 , Martin M Gossner 7, 8 , Paul Magdon 9 , Otso Ovaskainen 10, 11, 12 , Mária Potterf 10 , Peter Schall 13 , Tord Snäll 5 , Anne Sverdrup-Thygeson 4 , Wolfgang Weisser 14 , Jörg Müller 1, 15
Affiliation  

1 INTRODUCTION

Climate, topography and the 3D structure of trees and shrubs are the main drivers of animal diversity across different taxa in forest ecosystems (Gouveia et al., 2014 for primates; Jung et al., 2012 for bats; Müller, Stadler, et al., 2010; Müller, Noss, et al., 2010 for birds; Rinker et al., 2001 for arthropods). The composition and distribution of species inhabiting the complex structures of forests can be determined both directly by specific structural features (e.g. host plants, deadwood, vertical biomass distribution) and indirectly by varying microclimatic conditions, such as radiation, temperature or humidity (Davies & Asner, 2014). Local climate conditions are further affected by the topography, with higher variation in rough terrain. Such local variation in micro- and topoclimate can even override macro-climatic gradients along elevation or latitude (Hodkinson, 2005). Species' responses to variation in forest structure and climate should be mediated by their traits (Burner, Stephan, Drag, et al., 2021). Consequently, changes in environment can alter the functional diversity of communities and this in turn can have strong impacts on community dynamics and stability, as well as ecosystem processes (de Bello et al., 2021). Yet, our understanding of the relationships between topographic, climatic and forest structure variables and specific functional traits in arthropods is still mostly lacking.

Saproxylic (wood-living) beetles are a taxonomically, phylogenetically and functionally diverse group of insects, accounting for roughly one-third of all forest-dwelling arthropod species (Kuuluvainen & Siitonen, 2013). By a common definition (Speight, 1989), saproxylic beetles are those that are closely associated with dead or decaying wood during at least some part of their life cycle. However, despite their important role as indicators of forest biodiversity (Bouget et al., 2013; Lachat et al., 2012), little is known about which functional traits directly influence the occurrences of beetles under different forest conditions.

In saproxylic beetles, most trait-based studies employed ecological (e.g. Gossner et al., 2013; Laaksonen et al., 2020), morphological (Hagge et al., 2021) or life-history traits (Gillespie et al., 2017) or their combinations (Wetherbee et al., 2020). Ecological traits can be considered as the intrinsic characteristics directly linking species with their specific resources (Seibold et al., 2015). Due to their general character, they stand as surrogates of several more specific traits (e.g. morphological traits). As ecological traits cannot be measured on a single individual but rather represent experts' often subjective judgements about a given species (e.g. microhabitat preferences, trophic guilds or their feeding types; Freude et al., 1983; Köhler, 2000; Möller, 2009; Schmidl & Bussler, 2004), they should not be considered as traits in the strict sense (Violle et al., 2007). Nevertheless, they have been successfully used to assess the changes in functional diversity of saproxylic beetles along the forest gradients (Burner, Stephan, Drag, et al., 2021; Hagge et al., 2019; Janssen et al., 2017) and at sites affected by salvage logging (Thorn et al., 2014), or to estimate the extinction risk of species within this group (Seibold et al., 2015).

Unlike ecological traits, morphological traits are replicable, independent measurements of different body parts usually following a standardized protocol (Moretti et al., 2017). Except body size (e.g. Gossner et al., 2013; Laaksonen et al., 2020; Müller & Brandl, 2009), however, morphological traits have been employed only rarely in saproxylic beetles, mostly due to the complicated and labour-intensive trait collection process (Hagge et al., 2021). Nevertheless, theory suggests that they should be ecologically relevant, as species' morphological structures are linked to specific ecological functions that can directly respond to changing environmental conditions or land-use intensity (Barton et al., 2011). Moving from an understanding of species relationships along environmental gradients in forest to identifying the traits that underpin these relationships is thus a critical step in understanding community assembly and its underlying mechanisms (McGill et al., 2006).

In this study, we explore these trait–environment relationships by combining relevant morphological (Table 1) and ecological (Table 2) traits, information from airborne laser scanning (ALS) and field sampling. Based on previous publications and the proposed ecological functions of morphological traits (Hagge et al., 2021), we developed five predictions about how environmental characteristics measured in our study may influence the distribution of morphological traits of saproxylic beetle communities (Table 1). We apply a trait-based joint species distribution model (JSDM) to investigate how the occurrence probability of saproxylic beetle species changes along environmental gradients in Germany, and which traits predict variation in beetle responses.

TABLE 1. Morphological traits (taken from Hagge et al., 2021) used to study beetle responses to environmental gradients including their presumed ecological functions
Trait Range Units Predictions Presumed ecological function and the mechanism
Colour 78–154 dark—pale index Colour lightness will decrease at higher elevations Thermoregulation—dark individuals can heat up faster than light individuals, so they should be favoured under conditions of low temperature (Trullas et al., 2007); UV protection—dark individuals have higher resistance to UV radiation, so they should be also favoured in higher elevations (True, 2003)
Body length 1.2–36.2 mm Body size-related traits will increase with increasing amount of deadwood and with decreasing canopy density Body size—larger species prefer dead wood of large diameter and of late decay stages (Gossner et al., 2013), or more robust beetles favour open habitats over structurally complex habitats (Barton et al., 2011)
Body width 0.4–16.1 mm
Head length 0.2–5.9 mm
Antenna length 0.2–19.4 mm Eye length and antenna length will decrease with higher canopy density Sensory—larger eyes and longer antennas were related to more open areas in carabid beetles (Talarico et al., 2007)
Eye length 0.1–4.2 mm
Front femur length 0.2–7.1 mm Wing length and front femur length will decrease with increasing deadwood amount and deadwood structure Dispersal ability—ephemeral resource-related species have better dispersal ability than the species connected to more stable habitat (Komonen & Müller, 2018)
Wing length 1.1–31.4 mm
Jaw length 0.1–4.1 mm Jaw length will increase with increasing proportion of conifers Wood processing—stronger mandibles can be related to harder wood that adult saproxylic beetles have to deal with (Hagge et al., 2021)
TABLE 2. Ecological traits used to study beetle responses to environmental gradients
Trait Range Categories Source
Canopy niche 1–3 open–closed Seibold et al. (2015)
Decay niche 1–5 alive–decomposed Seibold et al. (2015)
Flower visitor 2 categories yes, no Seibold et al. (2015)
Host tree 3 categories conifer, broad-leaved, both Seibold et al. (2015)
Habitat 4 categories wood, mould, fungi, bark Köhler (2000)


中文翻译:

高分辨率 3D 森林结构解释了腐木甲虫组合的生态形态特征变异

1 简介

气候、地形以及树木和灌木的 3D 结构是森林生态系统中不同分类群动物多样性的主要驱动因素(Gouveia 等人,2014 年灵长类动物;Jung 等人,2012 年蝙蝠;Müller、  Stadler等 。 ,  2010 年;Müller、Noss 等人,  2010 年鸟类;Rinker 等人,  2001 年节肢动物)。栖息在森林复杂结构中的物种的组成和分布既可以由特定的结构特征(例如寄主植物、枯木、垂直生物量分布)直接决定,也可以由不同的小气候条件(例如辐射、温度或湿度)间接决定(Davies & Asner ,  2014). 当地的气候条件进一步受到地形的影响,崎岖地形的变化更大。微气候和地形气候的这种局部变化甚至可以超越沿海拔或纬度的宏观气候梯度 (Hodkinson,  2005 )。物种对森林结构和气候变化的反应应该由它们的特性来调节(Burner, Stephan, Drag, et al.,  2021)。因此,环境变化会改变社区的功能多样性,而这反过来又会对社区动态和稳定性以及生态系统过程产生强烈影响(de Bello 等人,2021 年 ). 然而,我们对节肢动物的地形、气候和森林结构变量与特定功能特征之间的关系的理解仍然很缺乏。

腐木(木栖)甲虫是一种在分类学、系统发育和功能上都多样化的昆虫类群,约占所有森林栖息节肢动物物种的三分之一(Kuuluvainen & Siitonen,2013 年 。根据通用定义 (Speight,  1989 ),腐木甲虫是指至少在其生命周期的某些部分与死木或腐烂木材密切相关的甲虫。然而,尽管它们作为森林生物多样性指标具有重要作用(Bouget 等人,  2013 年;Lachat 等人,  2012 年),但对于哪些功能性状直接影响不同森林条件下甲虫的发生,我们知之甚少。

在腐木甲虫中,大多数基于性状的研究采用生态(例如 Gossner 等人,  2013 年;Laaksonen 等人,  2020 年)、形态学(Hagge 等人,  2021 年)或生活史特征(Gillespie 等人,  2017 年)或其组合(Wetherbee 等人,  2020 年)。生态性状可以被认为是直接将物种与其特定资源联系起来的内在特征(Seibold et al.,  2015). 由于它们的一般特征,它们代表了几个更具体的特征(例如形态特征)。由于生态特征无法通过单个个体来衡量,而是代表了专家对特定物种的主观判断(例如微生境偏好、营养群或其摄食类型;Freude 等人,1983 年;Köhler,2000 年;  Möller,  2009年  Schmidl & Bussler,  2004),它们不应被视为严格意义上的特征(Violle et al.,  2007)。尽管如此,它们已成功用于评估沿森林梯度的腐木甲虫功能多样性的变化(Burner、Stephan、Drag 等人,2021 年;Hagge 等 , 2019 ; Janssen 等人,  2017 年)和受打捞伐木影响的地点(Thorn 等人,  2014 年),或估计该组内物种的灭绝风险(Seibold 等人,  2015 年)。

与生态特征不同,形态特征是可复制的,通常遵循标准化协议对不同身体部位进行独立测量(Moretti 等人,  2017 年)。除了体型(例如 Gossner 等人,  2013 年;Laaksonen 等人,  2020 年;Müller 和 Brandl,  2009 年),然而,形态特征很少用于腐木甲虫,主要是由于复杂和劳动密集型特征收集过程(Hagge 等人,  2021 年)。然而,理论表明它们应该具有生态相关性,因为物种的形态结构与特定的生态功能有关,可以直接响应不断变化的环境条件或土地利用强度(Barton 等人, 2011 年)。因此,从了解森林中沿环境梯度的物种关系到确定支撑这些关系的特征是了解群落组装及其潜在机制的关键步骤(McGill 等人,2006 年 

在这项研究中,我们通过结合相关的形态学(表 1)和生态学(表 2)特征、来自机载激光扫描(ALS)和现场采样的信息来探索这些特征-环境关系。基于先前的出版物和形态特征的拟议生态功能(Hagge 等人,  2021 年),我们针对我们研究中测量的环境特征如何影响腐木甲虫群落形态特征的分布制定了五项预测(表 1)。我们应用基于特征的联合物种分布模型 (JSDM) 来研究德国腐木甲虫物种的发生概率如何沿环境梯度变化,以及哪些特征预测甲虫反应的变化。

表 1.形态学特征(取自 Hagge 等人,  2021 年)用于研究甲虫对环境梯度的反应,包括它们假定的生态功能
特征 范围 单位 预测 假定的生态功能和机制
颜色 78–154 深浅指数 海拔越高颜色亮度越低 体温调节——深色个体比浅色个体升温更快,因此在低温条件下应该受到青睐(Trullas et al.,  2007);防紫外线——深色个体对紫外线辐射具有更高的抵抗力,因此他们在高海拔地区也应该受到青睐(True,  2003
体长 1.2–36.2 毫米 与体型相关的特征将随着枯木数量的增加和树冠密度的降低而增加 体型较大的物种更喜欢大直径和晚期腐烂阶段的枯木(Gossner 等人,  2013 年),或者更健壮的甲虫更喜欢开放的栖息地而不是结构复杂的栖息地(Barton 等人,  2011 年
车身宽度 0.4–16.1 毫米
头长 0.2–5.9 毫米
天线长度 0.2–19.4 毫米 眼长和天线长度将随着冠层密度的增加而减少 感觉——更大的眼睛和更长的触角与步甲虫的更多开放区域有关(Talarico 等人,  2007 年
眼长 0.1–4.2 毫米
前股骨长度 0.2–7.1 毫米 翼长和前股骨长度会随着枯木数量和枯木结构的增加而减小 扩散能力——短暂的资源相关物种比连接到更稳定栖息地的物种具有更好的扩散能力(Komonen & Müller,  2018
翼长 1.1–31.4 毫米
钳口长度 0.1–4.1 毫米 下巴长度将随着针叶树比例的增加而增加 木材加工——更强壮的下颌骨可能与成年腐木甲虫必须处理的更硬木材有关(Hagge 等人,  2021 年
表 2.用于研究甲虫对环境梯度反应的生态特征
特征 范围 类别 来源
树冠壁龛 1–3 打开关闭 塞博尔德等人。( 2015 年)
腐烂利基 1–5 活着-分解 塞博尔德等人。( 2015 年)
花客 2类 是的,不 塞博尔德等人。( 2015 年)
宿主树 3类 针叶树,阔叶树,两者 塞博尔德等人。( 2015 年)
栖息地 4类 木材、霉菌、真菌、树皮 科勒 ( 2000 )
更新日期:2022-09-23
down
wechat
bug