当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A single hole spin with enhanced coherence in natural silicon
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2022-09-22 , DOI: 10.1038/s41565-022-01196-z
N Piot 1 , B Brun 1 , V Schmitt 1 , S Zihlmann 1 , V P Michal 2 , A Apra 1 , J C Abadillo-Uriel 2 , X Jehl 1 , B Bertrand 3 , H Niebojewski 3 , L Hutin 3 , M Vinet 3 , M Urdampilleta 4 , T Meunier 4 , Y-M Niquet 2 , R Maurand 1 , S De Franceschi 1
Affiliation  

Semiconductor spin qubits based on spin–orbit states are responsive to electric field excitations, allowing for practical, fast and potentially scalable qubit control. Spin electric susceptibility, however, renders these qubits generally vulnerable to electrical noise, which limits their coherence time. Here we report on a spin–orbit qubit consisting of a single hole electrostatically confined in a natural silicon metal-oxide-semiconductor device. By varying the magnetic field orientation, we reveal the existence of operation sweet spots where the impact of charge noise is minimized while preserving an efficient electric-dipole spin control. We correspondingly observe an extension of the Hahn-echo coherence time up to 88 μs, exceeding by an order of magnitude existing values reported for hole spin qubits, and approaching the state-of-the-art for electron spin qubits with synthetic spin–orbit coupling in isotopically purified silicon. Our finding enhances the prospects of silicon-based hole spin qubits for scalable quantum information processing.



中文翻译:


天然硅中具有增强相干性的单孔自旋



基于自旋轨道状态的半导体自旋量子位可响应电场激发,从而实现实用、快速且潜在可扩展的量子位控制。然而,自旋电敏感性使得这些量子位通常容易受到电噪声的影响,从而限制了它们的相干时间。在这里,我们报告了一种自旋轨道量子位,该量子位由静电限制在天然硅金属氧化物半导体器件中的单孔组成。通过改变磁场方向,我们揭示了工作最佳点的存在,其中电荷噪声的影响最小化,同时保持有效的电偶极子自旋控制。我们相应地观察到哈恩回波相干时间延长至 88 μs,超出空穴自旋量子位现有值的一个数量级,并接近具有合成自旋轨道的电子自旋量子位的最新技术同位素纯化硅中的耦合。我们的发现增强了硅基空穴自旋量子位用于可扩展量子信息处理的前景。

更新日期:2022-09-23
down
wechat
bug