当前位置: X-MOL 学术J. Materiomics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tunable natural resonances via synergistic effects of two phases in Fex(CoyNi1-y)100-x for multi-band microwave absorption
Journal of Materiomics ( IF 8.4 ) Pub Date : 2022-09-17 , DOI: 10.1016/j.jmat.2022.08.010
Renchao Hu , Desheng Pan , Xinwei Xu , Bin Xiao , Hong Wang

Multi-band microwave absorption is becoming ubiquitous owing to the increasingly complex electromagnetic environment driven by the diversity of electronic devices. However, research on efficient electromagnetic absorbers applicable in both centimeter-wave and millimeter-wave bands to address the electromagnetic interference in 5G networks is highly challenging. In this study, Fex(CoyNi1-y)100-x particles with two phases (face-centered cubic (FCC) and hexagonal close-packed (HCP)) were synthesized and were found to exhibit excellent electromagnetic wave absorption. HCP phase with high magnetocrystalline anisotropy was introduced into FCC phase Fex(CoyNi1-y)100-x, resulting in natural resonances in multi-band frequency. Prominent microwave absorption properties in ultra-wide bandwidth ranging from 6.9 to 39.5 GHz were obtained. The maximum reflection loss (RL) of the Fe23(Co0.5Ni0.5)77 composite film reached −50 dB. Such a remarkable absorption performance is attributed to the synergetic effects of the multiple natural resonances generated by the coexistence of HCP and FCC phases in Fe23(Co0.5Ni0.5)77. Overall, this work is promising for the future design of high-performance microwave absorbing materials in a wide bandwidth.



中文翻译:

通过 Fex(CoyNi1-y)100-x 中两相的协同效应实现可调谐自然共振,用于多波段微波吸收

由于电子设备的多样性导致电磁环境日益复杂,多波段微波吸收变得无处不在。然而,研究适用于厘米波和毫米波频段的高效电磁吸收器以解决 5G 网络中的电磁干扰问题极具挑战性。在这项研究中,合成了具有两相(面心立方 (FCC) 和密排六方 (HCP))的Fe x (Co y Ni 1- y ) 100- x粒子,发现它们表现出出色的电磁波吸收能力。将具有高磁晶各向异性的 HCP 相引入 FCC 相 Fe x (Co y Ni1- y ) 100- x,导致多频带频率的自然共振。在 6.9 至 39.5 GHz 的超宽带宽范围内获得了显着的微波吸收特性。Fe 23 (Co 0.5 Ni 0.5 ) 77复合膜的最大反射损耗( R L )达到-50 dB。如此显着的吸收性能归因于 Fe 23 (Co 0.5 Ni 0.5 ) 77中 HCP 和 FCC 相共存产生的多重自然共振的协同效应. 总的来说,这项工作对于未来设计宽带宽的高性能微波吸收材料具有广阔的前景。

更新日期:2022-09-17
down
wechat
bug