当前位置: X-MOL 学术J. Therm. Spray Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineered Aluminum Powder Microstructure and Mechanical Properties by Heat Treatment for Optimized Cold Spray Deposition of High-Strength Coatings
Journal of Thermal Spray Technology ( IF 3.1 ) Pub Date : 2022-09-08 , DOI: 10.1007/s11666-022-01455-4
Denny John , Tanaji Paul , Kazue Orikasa , Cheng Zhang , Benjamin Boesl , Arvind Agarwal

The lack of a comprehensive understanding of the role of heat treatments on microstructure and multiscale mechanical properties of powders and their interrelatedness with cold spray process parameters severely impedes the manufacturing of high-strength aluminum coatings. For the first time, this study develops customized heat treatment protocols for controlling microstructure homogenization and intermetallic precipitation in Al 6061 and Al 7075 powders for cold spray. Solution treatment at 505-545 °C, followed by precipitation hardening at 130-160 °C, enables controlled precipitation of hard intermetallic Mg2Si and MgZn2 phases in Al 6061 and Al 7075, respectively. Strengthening by these phases enhances powder nanohardness of Al 6061 and Al 7075 from 1.0 and 1.5 to 1.6 and 1.8 GPa, respectively. The cumulative response from multiple grains at the micrometer length scale carries the trend to improve microhardness to 131.2 and 177 HV. These characteristics of the precipitation-hardened powder encompass improvements of 13-60% above their pristine gas-atomized counterparts. Experimentally measured powder hardness was employed as input in a cold spray simulation tool to develop process maps for manufacturing high-quality coatings. The optimum temperature for deposition with 75-98% efficiencies was established to be 100-300 °C with helium and 500-600 °C with nitrogen and air. In this process window, the particle velocity and critical velocity range of the powders are 998 to 1237 ms−1 and 548 to 858 ms−1 for helium and 580 to 663 ms−1 and 400 to 594 ms−1 for air and nitrogen, respectively.



中文翻译:

通过热处理优化高强度涂层冷喷涂沉积的工程化铝粉微观结构和机械性能

缺乏对热处理对粉末微观结构和多尺度力学性能的作用及其与冷喷涂工艺参数的相互关系的全面了解,严重阻碍了高强度铝涂层的制造。本研究首次开发了定制的热处理方案,以控制用于冷喷涂的 Al 6061 和 Al 7075 粉末的微观结构均匀化和金属间化合物沉淀。在 505-545 °C 进行固溶处理,然后在 130-160 °C 进行沉淀硬化,可以控制硬质金属间化合物 Mg 2 Si 和 MgZn 2的沉淀分别在 Al 6061 和 Al 7075 中的相。通过这些相的强化将 Al 6061 和 Al 7075 的粉末纳米硬度分别从 1.0 和 1.5 提高到 1.6 和 1.8 GPa。微米长度尺度上多个晶粒的累积响应具有将显微硬度提高到 131.2 和 177 HV 的趋势。沉淀硬化粉末的这些特性包括比原始气体雾化粉末提高 13-60%。实验测量的粉末硬度被用作冷喷涂模拟工具的输入,以开发工艺图用于制造高质量涂料。以 75-98% 的效率进行沉积的最佳温度被确定为 100-300 °C(氦气)和 500-600 °C(氮气和空气)。在该工艺窗口中,粉末的粒子速度和临界速度范围对于氦为 998 至 1237 ms -1和 548 至 858 ms -1 ,对于空气和氮气为580 至 663 ms -1和 400 至 594 ms -1 ,分别。

更新日期:2022-09-09
down
wechat
bug