当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heterosynaptic Plasticity Achieved by Highly Anisotropic Ionic Migration in Layered LixMoO3 for Neuromorphic Application
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2022-09-04 , DOI: 10.1002/aelm.202200721
Jing‐Kai Qin 1 , Bing‐Xuan Zhu 1 , Cong Wang 2 , Cheng‐Yi Zhu 1 , Ruo‐Yao Sun 1 , Liang Zhen 1, 3 , Yang Chai 2 , Cheng‐Yan Xu 1, 3
Affiliation  

Heterosynaptic plasticity is important for the implementation of biological functions in an excitatory synapse. Although plenty of devices have been developed to emulate the synaptic behaviors, the capability of processing information with high heterosynaptic plasticity remains challenging. Herein, it is reported that the electrical conductance of Li+ ion pre-intercalated MoO3 nanosheet (LixMoO3: 0 < x < 1) can be efficiently modulated, relying on the local phase transition associated with electric-field-driven ionic migration. The LixMoO3-based in-plane synaptic device exhibits attractive nonvolatile memory performance including high switching ratio (≈500) and long-term retention of states (>4000 s). By combining experimental studies with theoretical calculations, the anisotropic in-plane ionic migration in LixMoO3 is revealed, which is attributed to the dissimilarity of adiabatic barriers along different crystallographic directions. A multiterminal LixMoO3 memristor responses anisotropically to input spikes, and the slope of conductance change along a-axis is almost 7 times larger than that along c-axis, which contributes to the emulation of heterosynaptic plasticity required for neurobiological architecture. Additionally, the device can also fulfill the in-memory Boolean logic operations naturally. This work demonstrates the great potentials of ionic migration to develop artificial synapses, highlighting its promising applications for future brain-inspired computing systems.

中文翻译:

用于神经形态应用的层状 LixMoO3 中的高度各向异性离子迁移实现的异突触可塑性

异突触可塑性对于兴奋性突触中生物学功能的实现很重要。尽管已经开发了许多设备来模拟突触行为,但处理具有高异突触可塑性的信息的能力仍然具有挑战性。在此,据报道,Li +离子预插层 MoO 3纳米片 (Li x MoO 3 : 0 < x < 1)的电导率 可以通过与电场驱动离子相关的局部相变进行有效调节。移民。Li x MoO 3基于面内突触装置具有有吸引力的非易失性存储器性能,包括高开关比(≈500)和长期保持状态(> 4000 s)。通过将实验研究与理论计算相结合,揭示了Li x MoO 3中各向异性的面内离子迁移,这归因于沿不同结晶方向的绝热势垒的不同。多端 Li x MoO 3忆阻器对输入尖峰的响应各向异性,沿a轴的电导变化斜率几乎是沿c的 7 倍-轴,这有助于模拟神经生物学结构所需的异突触可塑性。此外,该设备还可以自然地完成内存中的布尔逻辑运算。这项工作展示了离子迁移在开发人工突触方面的巨大潜力,突出了其在未来类脑计算系统中的应用前景。
更新日期:2022-09-04
down
wechat
bug