当前位置: X-MOL 学术Comput. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical investigation on thermal-hydraulic performance of helical-coiled tube air cooler used for underground mine
Computers & Chemical Engineering ( IF 4.3 ) Pub Date : 2022-08-28 , DOI: 10.1016/j.compchemeng.2022.107966
Xing Lu , Xulei Tong , Jun Deng , Yang Xiao , Xueping Du

The helical-coiled tube air cooler has widely used as one of the most important terminal equipment in underground coalmine cooling systems. The mechanism of flow and heat transfer considering the structural feature of the mine-used helical-coiled tube air cooler are necessary to be investigated for optimal design guidance of the equipment, yet have not been investigated and well understood. In this work, a three-dimensional numerical model is established to investigate the thermal-hydraulic performance of the helical-coiled tube air cooler, with emphasis on quantifying the effects of the main geometrical parameters such as the number of tubes arranged under constant number of coil layer, the outer diameter of tube, the helix angle, the number of coil layers and the spacing between external tube walls at adjacent layers on the flow and heat transfer performance of the helical-coiled tube air cooler. Then the sensitivity analysis of the main geometric factors via Taguchi method is discussed under the dense tube layout condition. The results show that the Nusselt (Nu) number and pressure drop per unit tube length (Δp/L) increase with the increase of the number of tubes arranged under constant number of coil layer and the outer diameter of tube, while the Nu decreases and Δp/L increases when helix angle increase. The Nu and Δp/L keep stable with the increase of number of coil layers under constant inlet velocity. The increase of spacing between external tube walls results in the decrease of Nu and Δp/L. The sensitivity analysis indicates that the outer diameter of tube affects the Nu, f factor and the comprehensive performance factor (CPF=Nu/f13) most. Taking CPF as index, the effect of four main factors ranks as Dt>α>Nc>δ, and the optimal design is determined with CPF of 143.46 to 485.99 at inlet velocities within 5 to 25 m/s.



中文翻译:

井下螺旋盘管空冷器热工水力性能数值研究

螺旋盘管空冷器作为煤矿井下冷却系统中最重要的终端设备之一已被广泛应用。考虑矿用螺旋盘管空冷器结构特征的流动和传热机理对于设备的优化设计指导是必要的研究,但尚未得到研究和充分了解。在这项工作中,建立了一个三维数值模型来研究螺旋盘管空气冷却器的热工水力性能,重点是量化主要几何参数的影响,例如在恒定数量下排列的管子数量。线圈层、管外径、螺旋角、盘管层数和相邻层外管壁间距对螺旋盘管空冷器的流动和传热性能的影响。然后讨论了在密管布置条件下采用田口法对主要几何因素的敏感性分析。结果表明,努塞尔 (Nu ) 数量和单位管长压降(Δ p / L )随着盘管层数和管子外径的增加而增加,而Nu减小,Δ p / L增大螺旋角增加。在恒定入口速度下,随着线圈层数的增加,NuΔp / L保持稳定。外管壁间距的增加导致Nu和 Δ p / L的减小。敏感性分析表明管外径影响Nu, f因子和综合性能因子(CF=ñ/F13) 最多。以CPF为指标,四个主要因素的影响排序为D t > α > N c > δ,确定最优设计为CPF为 143.46 至 485.99,入口速度在 5 至 25 m/s 范围内。

更新日期:2022-08-28
down
wechat
bug