当前位置: X-MOL 学术Earth Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Eastern Australian Volcanic Province, its primitive melts, constraints on melt sources and the influence of mantle metasomatism
Earth-Science Reviews ( IF 10.8 ) Pub Date : 2022-08-28 , DOI: 10.1016/j.earscirev.2022.104168
Joshua J. Shea , Isra S. Ezad , Stephen F. Foley , Anthony W. Lanati

The Eastern Australian Volcanic Province (EAVP) is a ∼ 3800 km discontinuous belt of Cenozoic mafic intraplate volcanoes along the eastern seaboard of Australia. EAVP volcanic centres contain mantle-derived melts that show minor fractionation but have large ranges in major element concentrations. Current lava field and central volcano classifications of basaltic centres do not capture geochemical trends, and primitive melt compositions throughout the EAVP cannot be explained by partial melting of mantle peridotites alone. Based on a collated dataset of 3971 samples with chemical and spatial data, we classify its volcanism and identify mantle source assemblage compositions that give rise to its melts.

We identify all late Mesozoic (∼110 Ma) and all Cenozoic mafic volcanism in eastern Australia as the EAVP. Three volcanic regions are recognised within the EAVP: (1) The Northern Region in northern Queensland is comprised predominately of basalts. (2) The Central Region, which includes volcanism lying between the Northern and Southern Regions, is a combination of dominantly basaltic rocks with some felsic plugs and intrusions. Three age progressive tracks are recognised in this region with intermittent non-age-progressive volcanism. (3) The Southern Region comprises all Cenozoic volcanism from Tasmania and Bass Strait. Here, lavas outcrop on lithosphere <60 km thick and are similar in composition to the Northern Region, but with a large temporal range. Collectively these three regions are made up of 67 separate volcanic centres, with two dominant volcanic centre compositions, namely basalt and leucitite.

Primitive melt compositions in the EAVP can be produced by melting mantle source assemblages consisting of various proportions of three ‘end-members’: (1) a mixed anhydrous peridotite-pyroxenite, (2) a hydrous (phlogopite- and/or amphibole-bearing) pyroxenite, and (3) a hydrous pyroxenite + accessory Ti-oxides ± apatite. Primitive melts were identified with a filter on whole rock oxides Mg# > 58, FeOt > 6 wt%, CaO > 5.5 wt%, and MnO > 0.07 wt%, which is based on experimental melt compositions from realistic source compositions and P-T conditions. We suggest that the majority, if not all, of mantle source assemblages that gave rise to the EAVP underwent some degree of mantle metasomatism; this produced the three source end members introduced above. The metasomatic agents were probably silicate and carbonatite melts related to past subduction events during the accretion of eastern Australia while attached to eastern Gondwana between the mid-Cambrian to the late Triassic. Basalt and leucitite centres can be separated by TiO2 and K2O concentrations. Basaltic centres represent melts from the least metasomatised mantle sources on younger and thinner lithosphere to the east, whereas leucititic centres erupted on older and thicker lithosphere to the west, are sourced from the most pervasively metasomatised mantle assemblages at greater depths (120-160 km).

Melts within the EAVP were generated at temperatures below those required to melt peridotite, as the solidi for metasomatised mantle assemblages are depressed by ∼300 °C compared to anhydrous peridotites. At these cooler temperatures, the melting process could be initiated by a slight increase above the ambient upper mantle temperature (∼1350 °C); this is compatible with shear-driven upwelling and edge-driven convection rather than mantle plume activity as the melting mechanism for intraplate volcanism in eastern Australia. Lower solidus temperatures increase the probability for future eruptions occurring at volcanic centres considered dormant.



中文翻译:

澳大利亚东部火山区、其原始熔体、熔体来源的限制和地幔交代作用的影响

东澳大利亚火山省 (EAVP) 是澳大利亚东海岸的新生代镁铁质板内火山不连续带,长约 3800 公里。EAVP 火山中心包含来自地幔的熔体,这些熔体显示出轻微的分馏,但主要元素浓度的变化范围很大。目前的熔岩场和玄武质中心的中央火山分类没有捕捉到地球化学趋势,整个 EAVP 的原始熔体成分不能仅用地幔橄榄岩的部分熔融来解释。基于包含化学和空间数据的 3971 个样本的整理数据集,我们对其火山活动进行了分类,并确定了导致其熔融的地幔源组合成分。

我们将澳大利亚东部的所有晚中生代(~110 Ma)和所有新生代镁铁质火山活动确定为 EAVP。EAVP 内确认了三个火山区: (1) 昆士兰北部的北部地区主要由玄武岩组成。(2) 中部地区,包括位于南北地区之间的火山活动,主要由玄武质岩和一些长英质岩块和侵入体组成。该地区发现了三个年龄渐进的轨迹,具有间歇性的非年龄渐进火山作用。(3) 南部地区包括来自塔斯马尼亚和巴斯海峡的所有新生代火山活动。在这里,岩石圈上的熔岩露头厚度<60 km,其成分与北部地区相似,但时间范围较大。这三个区域共同由 67 个独立的火山中心组成,

EAVP 中的原始熔体成分可以通过熔化由不同比例的三种“末端成员”组成的地幔源组合来产生:(1)混合的无水橄榄岩-辉石岩,(2)含水(含金云母和/或闪石) ) 辉石矿,和 (3) 含水辉石矿 + 副钛氧化物 ±磷灰石。原始熔体通过对整个岩石氧化物 Mg# > 58、FeO t  > 6 wt%、CaO > 5.5 wt% 和 MnO > 0.07 wt% 的过滤器进行识别,这是基于来自真实来源成分和PT的实验熔体成分条件。我们认为,引起 EAVP 的大部分(如果不是全部)地幔源组合经历了一定程度的地幔交代作用。这产生了上面介绍的三个源端成员。交代物质可能是与过去俯冲事件有关的硅酸盐和碳酸岩熔体,这些熔体与澳大利亚东部增生期间的过去俯冲事件有关,同时在寒武纪中期至三叠纪晚期附着在冈瓦纳东部。玄武岩和白榴石中心可以被 TiO 2和 K 2分开O 浓度。玄武质中心代表东部较年轻和较薄的岩石圈上交代最少的地幔源的熔体,而西部较老和较厚的岩石圈上喷发的白质中心来自更深(120-160公里)最普遍交代的地幔组合.

EAVP 内的熔体是在低于熔化橄榄岩所需温度的温度下产生的,因为与无水橄榄岩相比,交代地幔组合的固相体降低了约 300 °C。在这些较低的温度下,熔融过程可以通过稍微高于环境上地幔温度(~1350°C)来启动;这与剪切驱动的上升流和边缘驱动的对流相兼容,而不是与地幔柱活动作为澳大利亚东部板内火山活动的熔化机制相一致。较低的固相线温度增加了未来在被认为处于休眠状态的火山中心发生喷发的可能性。

更新日期:2022-08-28
down
wechat
bug