当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Resistive Switching of Self-Assembled Silver Nanowire Networks Governed by Environmental Conditions
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2022-08-26 , DOI: 10.1002/aelm.202200631
Juan Ignacio Diaz Schneider 1 , Paula Cecilia Angelomé 2, 3 , Leticia Paula Granja 2, 4 , Cynthia Paula Quinteros 5 , Pablo Eduardo Levy 2, 4 , Eduardo David Martínez 1
Affiliation  

Percolating networks formed by coated metallic nanowires have recently shown to exhibit memristive properties, opening a path for the development of neuromorphic systems. In this work, the resistive switching phenomena occurring in percolative networks of silver nanowires (AgNWs) coated with a thin layer of polyvinylpyrrolidone is studied. By performing voltage-driven excursions, the highly-conductive pristine state irreversibly changes to a higher resistance state. Such an electroforming procedure enables the switching among multiple resistance states. The stability and controllability of the resistance levels are found to be highly dependent on the initial state and the environmental conditions. In low relative humidity environments, the system displays the most controlled switching operation, while in high humidity environments the system shows a high conductance level. Samples with hysteretic response display sharp and spontaneous transitions to different resistance states, exhibiting multilevel memory device features. Both behaviors can be associated with regions of high local concentration of AgNWs that can couple or decouple from the conduction paths according to external stimuli. Conductivity is determined at a fundamental level by electrochemical processes at critical junctions in which water molecules play a key role. These results are relevant for the development of AgNWs-based electronics and in-hardware neuromorphic computing.

中文翻译:

受环境条件控制的自组装银纳米线网络的电阻切换

由涂层金属纳米线形成的渗透网络最近显示出忆阻特性,为神经形态系统的发展开辟了道路。在这项工作中,研究了在涂有聚乙烯吡咯烷酮薄层的银纳米线 (AgNW) 的渗透网络中发生的电阻切换现象。通过执行电压驱动的偏移,高导电的原始状态不可逆地变为更高的电阻状态。这种电铸过程能够在多个电阻状态之间切换。发现电阻水平的稳定性和可控性高度依赖于初始状态和环境条件。在低相对湿度环境中,系统显示最受控的开关操作,而在高湿度环境中,系统显示出高电导水平。具有滞后响应的样品显示出向不同电阻状态的急剧和自发的转变,表现出多级存储器件的特性。这两种行为都可能与 AgNW 的局部高浓度区域相关,这些区域可以根据外部刺激与传导路径耦合或分离。电导率在基本水平上由水分子起关键作用的关键连接处的电化学过程确定。这些结果与基于 AgNWs 的电子学和硬件内神经形态计算的发展相关。这两种行为都可能与 AgNW 的局部高浓度区域相关,这些区域可以根据外部刺激与传导路径耦合或分离。电导率在基本水平上由水分子起关键作用的关键连接处的电化学过程确定。这些结果与基于 AgNWs 的电子学和硬件内神经形态计算的发展相关。这两种行为都可能与 AgNW 的局部高浓度区域相关,这些区域可以根据外部刺激与传导路径耦合或分离。电导率在基本水平上由水分子起关键作用的关键连接处的电化学过程确定。这些结果与基于 AgNWs 的电子学和硬件内神经形态计算的发展相关。
更新日期:2022-08-26
down
wechat
bug