当前位置: X-MOL 学术Comput. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Discrete-time contraction-based control of nonlinear systems with parametric uncertainties using neural networks
Computers & Chemical Engineering ( IF 3.9 ) Pub Date : 2022-08-24 , DOI: 10.1016/j.compchemeng.2022.107962
Lai Wei , Ryan McCloy , Jie Bao

In response to the continuously changing feedstock supply and market demand for products with different specifications, industrial processes need to be operated at time-varying operating conditions and targets (e.g., setpoints) to improve their economy, in contrast to traditional process operations around predetermined equilibriums. In this paper, a novel control approach is developed for nonlinear chemical processes to achieve time-varying reference tracking, by combining the universal approximation characteristics of neural networks with the rigor of discrete-time contraction analysis and control. This is a robust approach that can deal with bounded parametric uncertainties in the process model, which are commonly encountered in industrial processes. A new synthesis approach is developed that involves training a neural network representation of a contraction metric and differential feedback gain for a full range of parametric uncertainty. This network is then embedded in a contraction-based control structure. A separate neural network is also incorporated into the control-loop to perform online identification of uncertain system model parameters. The resulting control scheme is capable of achieving efficient offset-free tracking of time-varying references under the parametric uncertainty, without the need for controller redesign as the reference changes. Process stability is also ensured during online simultaneous learning and control. Simulation examples are provided to illustrate the approach.



中文翻译:

使用神经网络对具有参数不确定性的非线性系统进行基于离散时间收缩的控制

为了应对不断变化的原料供应和市场对不同规格产品的需求,工业过程需要在随时间变化的运行条件和目标(例如设定点)下运行,以提高其经济性,这与围绕预定平衡的传统过程操作不同. 在本文中,通过将神经网络的普遍逼近特性与严格的离散时间收缩分析和控制相结合,开发了一种用于非线性化学过程的新控制方法,以实现时变参考跟踪。这是一种稳健的方法,可以处理过程模型中的有界参数不确定性,这在工业过程中很常见。开发了一种新的综合方法,该方法涉及针对全范围的参数不确定性训练收缩度量和差分反馈增益的神经网络表示。然后将该网络嵌入基于收缩的控制结构中。一个单独的神经网络也被整合到控制回路中,以执行不确定系统模型参数的在线识别。由此产生的控制方案能够在参数不确定性下实现对时变参考的有效无偏移跟踪,而无需随着参考的变化重新设计控制器。在线同步学习和控制过程中也保证了过程稳定性。提供了仿真示例来说明该方法。然后将该网络嵌入基于收缩的控制结构中。一个单独的神经网络也被整合到控制回路中,以执行不确定系统模型参数的在线识别。由此产生的控制方案能够在参数不确定性下实现对时变参考的有效无偏移跟踪,而无需随着参考的变化重新设计控制器。在线同步学习和控制过程中也保证了过程稳定性。提供了仿真示例来说明该方法。然后将该网络嵌入基于收缩的控制结构中。一个单独的神经网络也被整合到控制回路中,以执行不确定系统模型参数的在线识别。由此产生的控制方案能够在参数不确定性下实现对时变参考的有效无偏移跟踪,而无需随着参考的变化重新设计控制器。在线同步学习和控制过程中也保证了过程稳定性。提供了仿真示例来说明该方法。由此产生的控制方案能够在参数不确定性下实现对时变参考的有效无偏移跟踪,而无需随着参考的变化重新设计控制器。在线同步学习和控制过程中也保证了过程稳定性。提供了仿真示例来说明该方法。由此产生的控制方案能够在参数不确定性下实现对时变参考的有效无偏移跟踪,而无需随着参考的变化重新设计控制器。在线同步学习和控制过程中也保证了过程稳定性。提供了仿真示例来说明该方法。

更新日期:2022-08-24
down
wechat
bug