当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthetic growth by self-lubricated photopolymerization and extrusion inspired by plants and fungi
Proceedings of the National Academy of Sciences of the United States of America ( IF 11.1 ) Pub Date : 2022-08-09 , DOI: 10.1073/pnas.2201776119
Matthew M. Hausladen 1 , Boran Zhao 1 , Matthew S. Kubala 2 , Lorraine F. Francis 1 , Timothy M. Kowalewski 2 , Christopher J. Ellison 1
Affiliation  

Many natural organisms, such as fungal hyphae and plant roots, grow at their tips, enabling the generation of complex bodies composed of natural materials as well as dexterous movement and exploration. Tip growth presents an exemplary process by which materials synthesis and actuation are coupled, providing a blueprint for how growth could be realized in a synthetic system. Herein, we identify three underlying principles essential to tip-based growth of biological organisms: a fluid pressure driving force, localized polymerization for generating structure, and fluid-mediated transport of constituent materials. In this work, these evolved features inspire a synthetic materials growth process called extrusion by self-lubricated interface photopolymerization (E-SLIP), which can continuously fabricate solid profiled polymer parts with tunable mechanical properties from liquid precursors. To demonstrate the utility of E-SLIP, we create a tip-growing soft robot, outline its fundamental governing principles, and highlight its capabilities for growth at speeds up to 12 cm/min and lengths up to 1.5 m. This growing soft robot is capable of executing a range of tasks, including exploration, burrowing, and traversing tortuous paths, which highlight the potential for synthetic growth as a platform for on-demand manufacturing of infrastructure, exploration, and sensing in a variety of environments.

中文翻译:

受植物和真菌启发的自润滑光聚合和挤压合成生长

许多自然生物,如真菌菌丝和植物根系,都长在它们的尖端,从而能够生成由天然材料组成的复杂物体以及灵巧的运动和探索。尖端生长展示了材料合成和驱动耦合的示例性过程,为如何在合成系统中实现生长提供了蓝图。在此,我们确定了基于尖端的生物有机体生长所必需的三个基本原理:流体压力驱动力、用于生成结构的局部聚合以及组成材料的流体介导传输。在这项工作中,这些进化的特征激发了一种合成材料的生长过程,称为自润滑界面光聚合挤出 (E-SLIP),它可以从液体前体连续制造具有可调机械性能的固体异型聚合物部件。为了展示 E-SLIP 的实用性,我们创建了一个尖端生长的软体机器人,概述了它的基本控制原则,并强调了它以高达 12 cm/min 的速度和高达 1.5 m 的长度生长的能力。这种成长中的软体机器人能够执行一系列任务,包括探索、挖洞和穿越曲折路径,这突出了合成生长作为在各种环境中按需制造基础设施、探索和传感的平台的潜力. 并强调其以高达 12 cm/min 的速度和高达 1.5 m 的长度生长的能力。这种成长中的软体机器人能够执行一系列任务,包括探索、挖洞和穿越曲折路径,这突出了合成生长作为在各种环境中按需制造基础设施、探索和传感的平台的潜力. 并强调其以高达 12 cm/min 的速度和高达 1.5 m 的长度生长的能力。这种成长中的软体机器人能够执行一系列任务,包括探索、挖洞和穿越曲折路径,这突出了合成生长作为在各种环境中按需制造基础设施、探索和传感的平台的潜力.
更新日期:2022-08-09
down
wechat
bug