当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wide bandgap semiconductor nanomembranes as a long-term biointerface for flexible, implanted neuromodulator
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2022-08-08 , DOI: 10.1073/pnas.2203287119
Tuan-Khoa Nguyen 1 , Matthew Barton 2 , Aditya Ashok 1, 3 , Thanh-An Truong 1 , Sharda Yadav 1 , Michael Leitch 2 , Thanh-Vinh Nguyen 4 , Navid Kashaninejad 1 , Toan Dinh 5 , Leonie Hold 1 , Yusuke Yamauchi 3, 6, 7 , Nam-Trung Nguyen 1 , Hoang-Phuong Phan 1, 8
Affiliation  

Electrical neuron stimulation holds promise for treating chronic neurological disorders, including spinal cord injury, epilepsy, and Parkinson’s disease. The implementation of ultrathin, flexible electrodes that can offer noninvasive attachment to soft neural tissues is a breakthrough for timely, continuous, programable, and spatial stimulations. With strict flexibility requirements in neural implanted stimulations, the use of conventional thick and bulky packages is no longer applicable, posing major technical issues such as short device lifetime and long-term stability. We introduce herein a concept of long-lived flexible neural electrodes using silicon carbide (SiC) nanomembranes as a faradic interface and thermal oxide thin films as an electrical barrier layer. The SiC nanomembranes were developed using a chemical vapor deposition (CVD) process at the wafer level, and thermal oxide was grown using a high-quality wet oxidation technique. The proposed material developments are highly scalable and compatible with MEMS technologies, facilitating the mass production of long-lived implanted bioelectrodes. Our experimental results showed excellent stability of the SiC/silicon dioxide (SiO 2 ) bioelectronic system that can potentially last for several decades with well-maintained electronic properties in biofluid environments. We demonstrated the capability of the proposed material system for peripheral nerve stimulation in an animal model, showing muscle contraction responses comparable to those of a standard non-implanted nerve stimulation device. The design concept, scalable fabrication approach, and multimodal functionalities of SiC/SiO 2 flexible electronics offer an exciting possibility for fundamental neuroscience studies, as well as for neural stimulation–based therapies.

中文翻译:

宽带隙半导体纳米膜作为柔性植入神经调节剂的长期生物界面

神经元电刺激有望治疗慢性神经系统疾病,包括脊髓损伤、癫痫和帕金森病。可以为软神经组织提供无创附着的超薄柔性电极的实现是及时、连续、可编程和空间刺激的突破。随着神经植入刺激对灵活性的严格要求,使用传统的厚而笨重的包装不再适用,带来了设备寿命短和长期稳定性等重大技术问题。我们在此介绍了使用碳化硅 (SiC) 纳米膜作为法拉第界面和热氧化物薄膜作为电阻挡层的长寿命柔性神经电极的概念。SiC 纳米膜是在晶圆级使用化学气相沉积 (CVD) 工艺开发的,热氧化物是使用高质量的湿法氧化技术生长的。拟议的材料开发具有高度可扩展性并与 MEMS 技术兼容,有助于长寿命植入生物电极的大规模生产。我们的实验结果表明 SiC/二氧化硅 (SiO2个) 生物电子系统,可以在生物流体环境中保持良好的电子特性,并可能持续数十年。我们在动物模型中展示了所提出的材料系统对周围神经刺激的能力,显示出与标准非植入式神经刺激装置相当的肌肉收缩反应。SiC/SiO 的设计理念、可扩展制造方法和多模态功能2个柔性电子设备为基础神经科学研究以及基于神经刺激的疗法提供了令人兴奋的可能性。
更新日期:2022-08-08
down
wechat
bug