当前位置: X-MOL 学术Int. J. Coal Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Combining molecular simulation and experiment to prove micropore distribution controls methane adsorption in kerogens
International Journal of Coal Geology ( IF 5.6 ) Pub Date : 2022-08-17 , DOI: 10.1016/j.coal.2022.104092
Wei Li , Lee A. Stevens , Bo Zhang , Dingye Zheng , Colin E. Snape

Combining molecular simulation and experimental results provides a more detailed understanding of gas sorption in kerogens than either approach in isolation. Porosity and chemical functionality are the main differences between kerogens affecting the methane adsorption, whereas which one is the key control has not been stated clearly. Molecular dynamic (MD) simulations with matrix and slit pore models in conjunction with Grand Canonical Monte Carlo (GCMC) simulations have been combined with experimental results from isolated Type II kerogens to identify the controlling factors for methane adsorption. The experimentally determined micropore volumes (Vmicro) and equilibrium methane adsorption capacities (Qm) of isolated kerogens (10–75 mm3/g TOC and 21.3–75.8 mg/g TOC, respectively) are in a comparable range with the simulation results for over mature kerogens (19–261 mm3/g TOC, and 36.5–148 mg/g TOC). However, the higher values from simulations are due to a combination of larger inaccessible microporosity for methane, and the largest interconnecting pore necks around 2 nm considered in simulation being larger than the average neck size in the isolated kerogens. Both the experimental and simulation results indicate the major contributor to Type I (a) and I (b) isotherms are smaller (< 1 nm) and larger micropores (1–2 nm), respectively. The methane adsorption capacity of the kerogen matrix increases with increased maturity and micropore volume, with a positive correlation between Vmicro and Qm observed. MD results at 25 and 100 °C showed that methane only has affinity with certain oxygen, sulfur, and nitrogen functional groups at very low pressure (<1.6 bar at 25 °C, <0.8 bar at 100 °C), and the affinity becomes much weaker at higher pressures with no significant differences among the functional groups considered. Moreover, the similar heats of adsorption (23.2, 23.1, 23.5, 22.8 KJ/mol) of methane with kerogens of different maturity confirm that the differences in surface functionality have a negligible effect on methane adsorption. Therefore, micropore volume in kerogens is the key control for methane adsorption.



中文翻译:

结合分子模拟和实验证明微孔分布控制干酪根中甲烷的吸附

结合分子模拟和实验结果,可以更详细地了解干酪根中的气体吸附,而不是任何一种单独的方法。孔隙度和化学功能是影响甲烷吸附的干酪根之间的主要区别,而哪一个是关键控制尚未明确说明。结合大规范蒙特卡罗 (GCMC) 模拟的基质和狭缝孔模型的分子动力学 (MD) 模拟与孤立的 II 型干酪根的实验结果相结合,以确定甲烷吸附的控制因素。实验确定的孤立干酪根 (10–75 mm 3 ) 的微孔体积 (V micro ) 和平衡甲烷吸附容量 (Qm)/g TOC 和 21.3–75.8 mg/g TOC)与过成熟干酪根(19–261 mm 3 /g TOC 和 36.5–148 mg/g TOC)的模拟结果处于可比范围。然而,模拟中的较高值是由于甲烷难以接近的较大微孔隙度以及模拟中考虑的 2 nm 左右的最大互连孔颈大于孤立干酪根的平均颈尺寸的组合。实验和模拟结果都表明 I 型 (a) 和 I (b) 等温线的主要贡献者分别是较小的 (< 1 nm) 和较大的微孔 (1-2 nm)。干酪根基质的甲烷吸附能力随着成熟度和微孔体积的增加而增加,与 V micro呈正相关和 Qm 观察到。25 和 100 °C 的 MD 结果表明,甲烷仅在极低压力下(<1.6 bar at 25 °C,<0.8 bar at 100 °C)仅与某些氧、硫和氮官能团具有亲和力,并且亲和力变为在较高压力下要弱得多,所考虑的官能团之间没有显着差异。此外,不同成熟度干酪根对甲烷的相似吸附热(23.2、23.1、23.5、22.8 KJ/mol)证实了表面官能度的差异对甲烷吸附的影响可以忽略不计。因此,干酪根中的微孔体积是甲烷吸附的关键控制因素。

更新日期:2022-08-17
down
wechat
bug