当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient Room-Temperature Voltage Control of Picosecond Optical Spin Orientation Using a III-V Semiconductor Nanostructure
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2022-08-15 , DOI: 10.1002/aelm.202200588
Soyoung Park 1 , Satoshi Hiura 1 , Junichi Takayama 1 , Kazuhisa Sueoka 1 , Akihiro Murayama 1
Affiliation  

Manipulation of the optical spin orientation in semiconductors is a key technology for realizing spin-based photoelectric information processing. Application of magnetic field is a simple method to control the spin polarization degree through Zeeman splitting. However, this effect can only be achieved at cryogenic temperatures and in a strong magnetic field. Here, room-temperature voltage control of optical polarization in the range of 3–15%, corresponding to a 12–60% change in relative spin polarization is demonstrated. For this, a III-V semiconductor quantum dot tunnel coupled with a quantum well spin reservoir is used. The spin-flip scattering rate within quantum dots is electric-field-controlled in the time domain of several tens of picoseconds. This is achieved by precise control of the tunnel injection efficiency of electrons and holes via coupled potential modification. The findings will pave the way for the generation of ultrafast spin-modulated optical signals by the electric field effect.

中文翻译:

使用 III-V 半导体纳米结构的皮秒光学自旋取向的有效室温电压控制

操纵半导体中的光学自旋取向是实现基于自旋的光电信息处理的关键技术。施加磁场是一种通过塞曼分裂控制自旋极化程度的简单方法。然而,这种效果只能在低温和强磁场下才能实现。在这里,证明了在 3-15% 范围内的光学极化的室温电压控制,对应于 12-60% 的相对自旋极化变化。为此,使用了与量子阱自旋储存器耦合的 III-V 半导体量子点隧道。量子点内的自旋翻转散射率在几十皮秒的时域内受电场控制。这是通过耦合电位修改精确控制电子和空穴的隧道注入效率来实现的。这些发现将为通过电场效应产生超快自旋调制光信号铺平道路。
更新日期:2022-08-15
down
wechat
bug