当前位置: X-MOL 学术Earth Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Southern Granulite Terrane, India: The saga of over 2 billion years of Earth's history
Earth-Science Reviews ( IF 10.8 ) Pub Date : 2022-08-14 , DOI: 10.1016/j.earscirev.2022.104157
Moumita Talukdar , Tapabrato Sarkar , Pulak Sengupta , Dhrubajyoti Mukhopadhyay

Lying to the south of the Dharwar Craton, the expansive granulite massif, known as the Granulite Terrane of South India, preserves protracted history of the earth from ca. 3400–500 Ma. It has been divided into Northern and Southern Granulite Terranes, separated by the Moyar-Bhawani Shear Zone. Unlike the Archean Northern Granulite Terrane, the rocks of the Southern Granulite Terrane bear imprints of magmatism, sedimentation and metamorphism for over 2 billion years from Neoarchean to Cambrian. The Southern Granulite Terrane is subdivided into three geographic divisions, namely Nilgiri-Namakkal Block, Madurai Block and Trivandrum Block, separated from each other by the Palghat-Cauvery Shear Zone and Achankovil Shear Zone. The Nilgiri-Namakkal Block preserves ca. 2900–2550 Ma ensemble of mafic-ultramafic rocks, interpreted as the remnants of Archean oceanic crust formed in a suprasubduction zone. Several phases of felsic magmatism between ca. 2840–2500 Ma and vestigial records of ca. 2600–2530 Ma sedimentation and ultrahigh-temperature metamorphism are found in the Nilgiri-Namakkal and Madurai Blocks. These felsic rocks, showing distinct TTG-type chemistry, rarely record the late Archean ultrahigh-temperature metamorphism, but underwent extensive high-pressure metamorphism (>11 kbar) along 43–65 °C/kbar geothermal gradients during early Siderian (2490–2440 Ma). The late Archean felsic magmatism and the superimposed early Siderian high-pressure metamorphism has been explained by ‘peel-back’ convergence mechanism that takes in account higher mantle temperature during this time. The Siderian crust of the Nilgiri-Namakkal, Madurai and possibly Trivandrum Blocks received extensive multi-phase sedimentation, presumably in a stable continental shelf, spanning from ca. 1800–700 Ma, partially sourced from the Northern Granulite Terrane and Western Dharwar Craton. This together with the unbroken magmatic and metamorphic episodes across the Palghat-Cauvery Shear Zone do not support the view that Palghat-Cauvery Shear Zone represents a Neoproterozoic suture along which the ‘Mozambique Ocean’ was closed. The remarkable similarity of geological events across the Moyar-Bhawani Shear Zone supports that the Northern and Southern Granulite Terranes formed a coherent block at least from ca. 2600 Ma. The late Paleoproterozoic (ca. 1740–1620 Ma) subduction related granitoid magmatism signifies crustal growth during Columbia supercontinent formation. The (Northern + Southern) Granulite Terrane coherent block was extended (without opening of an ocean basin) and received magmatism ranging from alkaline–carbonatite to A-type granitoids during ca. 850–600 Ma, which is tentatively related to the breakdown of Rodinia. Subsequent Ediacaran-Cambrian high- to ultrahigh-temperature metamorphism and associated magmatism, preponderant throughout the Southern Granulite Terrane, marks the last phase of tectonothermal event in the region and is widely correlated to the amalgamation of Gondwana supercontinent.

The geological history of the Northern and Southern Granulite Terranes shows striking resemblance with the Antongil-Masora-Bemarivo and Antananarivo-Ikalamavony–Itremo domains of Madagascar, respectively. Formation of a unified Indo-Madagascar landmass since ca. 2600 Ma or earlier is consistent with the extant geological evidence. Precambrian rocks of Sri Lanka share the Ediacaran-Cambrian metamorphism with the Southern Granulite Terrane and the basements rocks of Madagascar. However, inadequate data from Sri Lanka does not allow us to infer if Sri Lanka was part of the coherent Indo-Madagascar landmass since late Archean.



中文翻译:

印度南部的粒岩地体:超过 20 亿年地球历史的传奇

位于达瓦尔克拉通以南的广阔的麻粒岩地块,被称为南印度的粒岩地体,保存着从大约 3400-500 毫安。它被划分为北部和南部的花岗岩地体,由莫亚尔-巴瓦尼剪切带隔开。与太古代北部花岗岩地体不同,南部花岗岩地体的岩石带有岩浆作用、沉积作用和变质作用的印记从新太古代到寒武纪已有超过 20 亿年。南部花岗岩地体细分为三个地理分区,即 Nilgiri-Namakkal 地块、Madurai 地块和 Trivandrum 地块,由 Palghat-Cauvery 剪切带和 Achankovil 剪切带相互分隔。Nilgiri-Namakkal Block 保存了约。2900-2550 Ma 镁铁质-超镁铁质岩石群,解释为在超俯冲带形成的太古宙洋壳残余物。ca之间的几个长英质岩浆作用阶段。2840-2500 Ma 和约 ca 的遗迹记录。在 Nilgiri-Namakkal 和 Madurai 地块中发现了 2600-2530 Ma 的沉积和超高温变质作用。这些长英质岩石,显示出明显的 TTG 型化学,很少记录晚期太古宙超高温变质作用,但沿 43-65 °C/kbar 地温梯度经历了广泛的高压变质作用(>11 kbar)在西德利安早期(2490-2440 Ma)。太古宙晚期长英质岩浆作用和叠加的早期西德里亚高压变质作用可以通过考虑到这段时间较高的地幔温度的“剥离”辐合机制来解释。Nilgiri-Namakkal、Madurai 和可能的 Trivandrum 地块的 Siderian 地壳经历了广泛的多相沉积,大概是在一个稳定的大陆架中,跨越大约 1800-700 Ma,部分来自北部花岗岩地体和西达瓦尔克拉通。这与整个 Palghat-Cauvery 剪切带不间断的岩浆和变质事件一起,不支持 Palghat-Cauvery 剪切带代表“莫桑比克海洋”沿其闭合的新元古代缝合线的观点。Moyar-Bhawani 剪切带地质事件的显着相似性支持北部和南部粒状岩地体至少从大约 ca 开始形成了一个连贯的块体。2600 毫安。晚古元古代(约1740-1620 Ma)与俯冲有关的花岗岩浆作用表明哥伦比亚超大陆形成期间的地壳生长。(北部+南部)花岗岩地块相干块被扩展(没有打开洋盆),并在大约 10 年期间接受了从碱性碳酸盐岩到 A 型花岗岩的岩浆作用。850-600 Ma,这与罗迪尼亚的分解初步有关。随后的埃迪卡拉纪-寒武纪高温至超高温变质作用和相关的岩浆作用在整个南部花岗岩地体中占主导地位,标志着该地区构造热事件的最后阶段,并与冈瓦纳超大陆的合并广泛相关。

北部和南部粒状岩地体的地质历史分别与马达加斯加的 Antongil-Masora-Bemarivo 和 Antananarivo-Ikalamavony-Itremo 区域有着惊人的相似之处。自 ca. 以来形成统一的印度-马达加斯加大陆。2600 Ma或更早与现存地质证据一致。斯里兰卡的前寒武纪岩石与南部花岗岩地体和马达加斯加的基底岩石共享埃迪卡拉纪-寒武纪变质作用。然而,斯里兰卡的数据不足,我们无法推断斯里兰卡是否是自太古宙晚期以来连贯的印度-马达加斯加大陆的一部分。

更新日期:2022-08-14
down
wechat
bug