当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Eliminating the Micropore Confinement Effect of Carbonaceous Electrodes for Promoting Zn-Ion Storage Capability
Advanced Materials ( IF 27.4 ) Pub Date : 2022-08-11 , DOI: 10.1002/adma.202203744
Li Wang 1 , Mengke Peng 1 , Jierui Chen 1 , Ting Hu 2 , Kai Yuan 1 , Yiwang Chen 1, 3
Affiliation  

Zinc-ion capacitors (ZICs) are promising technology for large-scale energy storage by integrating the attributes of supercapacitors and zinc-ion batteries. Unfortunately, the insufficient Zn2+-storage active sites of carbonaceous cathode materials and the mismatch of pore sizes with charge carriers lead to unsatisfactory Zn2+ storage capability. Herein, new insights for boosting Zn2+ storage capability of activated nitrogen-doped hierarchical porous carbon materials (ANHPC-x) are reported by effectively eliminating the micropore confinement effect and synchronously elevating the utilization of active sites. Therefore, the best-performed ANHPC-2 delivers impressive electrochemical properties for ZICs in terms of excellent capacity (199.1 mAh g−1), energy density (155.2 Wh kg−1), and durability (65 000 cycles). Systematic ex situ characterizations together with in situ electrochemical quartz crystal microbalance and Raman spectra measurements reveal that the remarkable electrochemical performance is assigned to the synergism of the Zn2+, H+, and SO42− co-adsorption mechanism and reversible chemical adsorption. Furthermore, the ANHPC-2-based quasi-solid-state ZIC demonstrates excellent electrochemical capability with an ultralong lifespan of up to 100 000 cycles. This work not only provides a promising strategy to improve the Zn2+ storage capability of carbonaceous materials but also sheds lights on charge-storage mechanism and advanced electrode materials’ design for ZICs toward practical applications.

中文翻译:

消除碳质电极的微孔限制效应以提高锌离子存储能力

锌离子电容器(ZICs)是一种很有前景的大规模储能技术,它结合了超级电容器和锌离子电池的特性。不幸的是,碳质正极材料的Zn 2+储存活性位点不足以及孔径与载流子的不匹配导致Zn 2+储存能力不理想。在此,提高活性氮掺杂分级多孔碳材料 (ANHPC- x ) 的Zn 2+存储能力的新见解)通过有效消除微孔限制效应并同步提高活性位点的利用率来报道。因此,性能最佳的 ANHPC-2 在出色的容量(199.1 mAh g -1)、能量密度(155.2 Wh kg -1)和耐久性(65 000 次循环)方面为 ZIC 提供了令人印象深刻的电化学性能。系统的异位表征以及原位电化学石英晶体微天平和拉曼光谱测量表明,显着的电化学性能归因于 Zn 2+、H +和 SO 4 2-的协同作用共吸附机理和可逆化学吸附。此外,基于 ANHPC-2 的准固态 ZIC 表现出优异的电化学能力,具有高达 100 000 次循环的超长寿命。这项工作不仅为提高碳质材料的 Zn 2+存储能力提供了一种有前景的策略,而且为 ZIC 的电荷存储机制和先进电极材料的实际应用设计提供了启示。
更新日期:2022-08-11
down
wechat
bug