当前位置: X-MOL 学术Agric. For. Meteorol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Causality guided machine learning model on wetland CH4 emissions across global wetlands
Agricultural and Forest Meteorology ( IF 5.6 ) Pub Date : 2022-08-11 , DOI: 10.1016/j.agrformet.2022.109115
Kunxiaojia Yuan , Qing Zhu , Fa Li , William J. Riley , Margaret Torn , Housen Chu , Gavin McNicol , Min Chen , Sara Knox , Kyle Delwiche , Huayi Wu , Dennis Baldocchi , Hongxu Ma , Ankur R. Desai , Jiquan Chen , Torsten Sachs , Masahito Ueyama , Oliver Sonnentag , Manuel Helbig , Eeva-Stiina Tuittila , Gerald Jurasinski , Franziska Koebsch , David Campbell , Hans Peter Schmid , Annalea Lohila , Mathias Goeckede , Mats B. Nilsson , Thomas Friborg , Joachim Jansen , Donatella Zona , Eugenie Euskirchen , Eric J. Ward , Gil Bohrer , Zhenong Jin , Licheng Liu , Hiroki Iwata , Jordan Goodrich , Robert Jackson

Wetland CH4 emissions are among the most uncertain components of the global CH4 budget. The complex nature of wetland CH4 processes makes it challenging to identify causal relationships for improving our understanding and predictability of CH4 emissions. In this study, we used the flux measurements of CH4 from eddy covariance towers (30 sites from 4 wetlands types: bog, fen, marsh, and wet tundra) to construct a causality-constrained machine learning (ML) framework to explain the regulative factors and to capture CH4 emissions at sub-seasonal scale. We found that soil temperature is the dominant factor for CH4 emissions in all studied wetland types. Ecosystem respiration (CO2) and gross primary productivity exert controls at bog, fen, and marsh sites with lagged responses of days to weeks. Integrating these asynchronous environmental and biological causal relationships in predictive models significantly improved model performance. More importantly, modeled CH4 emissions differed by up to a factor of 4 under a +1°C warming scenario when causality constraints were considered. These results highlight the significant role of causality in modeling wetland CH4 emissions especially under future warming conditions, while traditional data-driven ML models may reproduce observations for the wrong reasons. Our proposed causality-guided model could benefit predictive modeling, large-scale upscaling, data gap-filling, and surrogate modeling of wetland CH4 emissions within earth system land models.



中文翻译:

全球湿地湿地 CH4 排放的因果关系引导机器学习模型

湿地 CH 4排放是全球 CH 4预算中最不确定的组成部分之一。湿地 CH 4过程的复杂性使得确定因果关系以提高我们对 CH 4排放的理解和可预测性具有挑战性。在这项研究中,我们使用来自涡协方差塔(来自 4 种湿地类型的 30 个地点:沼泽、沼泽、沼泽和湿苔原)的 CH 4通量测量来构建因果约束机器学习 (ML) 框架来解释调节因子并在次季节尺度捕获 CH 4排放。我们发现土壤温度是 CH 4的主导因素所有研究的湿地类型的排放。生态系统呼吸 (CO 2 ) 和总初级生产力在沼泽、沼泽和沼泽地发挥控制作用,反应滞后数天到数周。将这些异步环境和生物因果关系整合到预测模型中可显着提高模型性能。更重要的是,当考虑因果约束时,在 +1°C 升温情景下模拟的 CH 4排放差异高达 4 倍。这些结果突出了因果关系在模拟湿地 CH 4中的重要作用排放量,尤其是在未来变暖条件下,而传统的数据驱动的 ML 模型可能会出于错误的原因重现观测结果。我们提出的因果关系引导模型有助于地球系统土地模型中湿地 CH 4排放的预测建模、大规模升级、数据填补和替代建模。

更新日期:2022-08-11
down
wechat
bug