当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Catalytic ozonation with biogenic Fe-Mn-Co oxides: Biosynthesis protocol and catalytic performance
Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2022-08-11 , DOI: 10.1016/j.apcatb.2022.121833
Anlin Xu , Siyan Fan , Tong Meng , Ren Zhang , Yunhai Zhang , Shunlong Pan , Yongjun Zhang

Metal oxides, as a popular group of ozonation catalyst, are usually synthesized with physiochemical protocols involving hazardous materials and extreme conditions. In this study, a biological method was studied with manganese oxidizing bacteria Pseudomonas sp. to synthesize multi-metal oxides consisting of iron, manganese, and cobalt (Bio-FeMnCoOx) to catalyze ozonation for the first time. It was found that the dosage of cobalt, the cultivation time, and the polishing methods could significantly impact the catalytic activities of degrading benzotriazole as a model. The second-order degrading kinetic constant with optimized Bio-FeMnCoOx was 4.8 times that with the physiochemically synthesized peer. The activity of Bio-FeMnCoOx was compared with other reported catalysts in terms of Rct value. The quenching tests and EPR spectra indicated the participation of hydroxyl radicals, superoxide radicals, and singlet oxygen. The study demonstrates the great potential of biosynthesis as a green protocol for preparing metal oxides to efficiently catalyze ozonation.



中文翻译:

生物源 Fe-Mn-Co 氧化物催化臭氧化:生物合成方案和催化性能

金属氧化物作为一类流行的臭氧化催化剂,通常采用涉及有害材料和极端条件的物理化学方案合成。在这项研究中,研究了一种用锰氧化细菌假单胞菌属的生物学方法。sp。首次合成由铁、锰和钴组成​​的多金属氧化物(Bio-FeMnCoOx)来催化臭氧化。发现钴的用量、培养时间和抛光方法对降解苯并三唑模型的催化活性有显着影响。优化后的 Bio-FeMnCoOx 的二阶降解动力学常数是物理化学合成同类产品的 4.8 倍。Bio-FeMnCoOx 的活性与其他报道的催化剂的 Rct 值进行了比较。淬灭试验和 EPR 光谱表明羟基自由基、超氧自由基和单线态氧的参与。该研究证明了生物合成作为制备金属氧化物以有效催化臭氧化的绿色方案的巨大潜力。

更新日期:2022-08-11
down
wechat
bug