当前位置: X-MOL 学术Plant Cell › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MCU proteins dominate in vivo mitochondrial Ca2+ uptake in Arabidopsis roots.
The Plant Cell ( IF 11.6 ) Pub Date : 2022-10-27 , DOI: 10.1093/plcell/koac242
Cristina Ruberti 1 , Elias Feitosa-Araujo 1 , Zhaolong Xu 2, 3 , Stephan Wagner 1, 4 , Matteo Grenzi 2 , Essam Darwish 5, 6 , Sophie Lichtenauer 1 , Philippe Fuchs 1, 4 , Ambra Selene Parmagnani 2 , Daria Balcerowicz 7 , Sébastjen Schoenaers 7 , Carolina de la Torre 8 , Khansa Mekkaoui 9 , Adriano Nunes-Nesi 10 , Markus Wirtz 11 , Kris Vissenberg 7, 12 , Olivier Van Aken 5 , Bettina Hause 9 , Alex Costa 2, 13 , Markus Schwarzländer 1
Affiliation  

Ca2+ signaling is central to plant development and acclimation. While Ca2+-responsive proteins have been investigated intensely in plants, only a few Ca2+-permeable channels have been identified, and our understanding of how intracellular Ca2+ fluxes is facilitated remains limited. Arabidopsis thaliana homologs of the mammalian channel-forming mitochondrial calcium uniporter (MCU) protein showed Ca2+ transport activity in vitro. Yet, the evolutionary complexity of MCU proteins, as well as reports about alternative systems and unperturbed mitochondrial Ca2+ uptake in knockout lines of MCU genes, leave critical questions about the in vivo functions of the MCU protein family in plants unanswered. Here, we demonstrate that MCU proteins mediate mitochondrial Ca2+ transport in planta and that this mechanism is the major route for fast Ca2+ uptake. Guided by the subcellular localization, expression, and conservation of MCU proteins, we generated an mcu triple knockout line. Using Ca2+ imaging in living root tips and the stimulation of Ca2+ transients of different amplitudes, we demonstrated that mitochondrial Ca2+ uptake became limiting in the triple mutant. The drastic cell physiological phenotype of impaired subcellular Ca2+ transport coincided with deregulated jasmonic acid-related signaling and thigmomorphogenesis. Our findings establish MCUs as a major mitochondrial Ca2+ entry route in planta and link mitochondrial Ca2+ transport with phytohormone signaling.

中文翻译:

MCU 蛋白在拟南芥根中主导体内线粒体 Ca2+ 摄取。

Ca2+ 信号传导是植物发育和适应的核心。虽然已经在植物中对 Ca2+ 反应蛋白进行了深入研究,但仅发现了少数 Ca2+ 渗透通道,我们对如何促进细胞内 Ca2+ 通量的理解仍然有限。哺乳动物通道形成线粒体钙单向转运蛋白 (MCU) 蛋白的拟南芥同系物在体外显示出 Ca2+ 转运活性。然而,MCU 蛋白的进化复杂性,以及关于替代系统和 MCU 基因敲除系中线粒体 Ca2+ 摄取不受干扰的报道,留下了关于 MCU 蛋白家族在植物体内功能的关键问题没有得到解答。在这里,我们证明了 MCU 蛋白在足底介导线粒体 Ca2+ 转运,并且这种机制是快速吸收 Ca2+ 的主要途径。在 MCU 蛋白的亚细胞定位、表达和保护的指导下,我们生成了一个 MCU 三重敲除系。使用活根尖中的 Ca2+ 成像和不同幅度的 Ca2+ 瞬变的刺激,我们证明线粒体 Ca2+ 摄取在三重突变体中变得有限。亚细胞 Ca2+ 转运受损的剧烈细胞生理表型与茉莉酸相关信号传导和 thigmomorphogenesis 的失调相吻合。我们的研究结果将 MCU 确立为植物体内主要的线粒体 Ca2+ 进入途径,并将线粒体 Ca2+ 转运与植物激素信号传导联系起来。我们证明线粒体 Ca2+ 摄取在三重突变体中变得有限。亚细胞 Ca2+ 转运受损的剧烈细胞生理表型与茉莉酸相关信号传导和 thigmomorphogenesis 的失调相吻合。我们的研究结果将 MCU 确立为植物体内主要的线粒体 Ca2+ 进入途径,并将线粒体 Ca2+ 转运与植物激素信号传导联系起来。我们证明线粒体 Ca2+ 摄取在三重突变体中变得有限。亚细胞 Ca2+ 转运受损的剧烈细胞生理表型与茉莉酸相关信号传导和 thigmomorphogenesis 的失调相吻合。我们的研究结果将 MCU 确立为植物体内主要的线粒体 Ca2+ 进入途径,并将线粒体 Ca2+ 转运与植物激素信号传导联系起来。
更新日期:2022-08-08
down
wechat
bug