当前位置: X-MOL 学术Environ. Sci.: Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Catalytic activity, water resistance and stability of hematite nanomaterials in oxidative removal of polychlorinated aromatic hydrocarbons can be simultaneously enhanced through facet engineering
Environmental Science: Nano ( IF 5.8 ) Pub Date : 2022-08-11 , DOI: 10.1039/d2en00618a
Xiaodong Ma 1 , Xiaoyao Liu 1 , Haiwei Guo 1 , Gengbo Ren 1 , Jiaxin Wen 1 , Wei Chen 2 , Guichang Wang 3
Affiliation  

Iron oxides are commonly used catalysts for the removal of polychlorinated aromatic hydrocarbons from incinerators. Here, we provide a proof of concept that facet engineering can be exploited to simultaneously improve the catalytic activity, water resistance and stability of iron oxides. Using 1,2-dichlorobenzene oxidation as a surrogate reaction, we show that α-Fe2O3 nanorods with predominantly exposed {110} facets (NR-{110}) exhibit lower T50% and T90% (temperatures of 50% and 90% removal) and higher CO2 selectivity under a dry condition than α-Fe2O3 nanoparticles with {012} facets, α-Fe2O3 nanosheets with {001} facets, and commercial α-Fe2O3. NR-{110} also exhibits superior water resistance (without exhibiting the “V-shaped” curve in 1,2-dichlorobenzene removal originated from the competitive adsorption of water) and much better stability. Spectroscopic evidence based on pyridine-adsorbed Fourier transform infrared and X-ray photoelectron spectroscopy, chemisorption analysis based on O2 temperature-programmed desorption, H2 temperature-programmed reduction and H2O temperature-programmed desorption and theoretical calculations demonstrate that the higher abundance of Lewis and Brønsted acid sites, higher concentration of surface active oxygen, more negative adsorption energy and lower C–Cl bond broken energy barrier associated with the (110) facet collectively enable fast reaction kinetics and more complete contaminant destruction. Additionally, the facet-specific interaction mode of water gives greater water resistance, and the abundant Brønsted acid sites on the (110) facet effectively provide H+ to prevent the accumulation of chloride ions, thus enhancing stability.

中文翻译:

通过刻面工程可以同时提高赤铁矿纳米材料在氧化去除多氯芳烃中的催化活性、耐水性和稳定性

氧化铁是从焚化炉中去除多氯芳烃的常用催化剂。在这里,我们提供了一个概念证明,即刻面工程可用于同时提高氧化铁的催化活性、耐水性和稳定性。使用 1,2-二氯苯氧化作为替代反应,我们表明具有主要暴露的 {110} 晶面 (NR-{110})的 α-Fe 2 O 3纳米棒表现出较低的T 50%T 90%(温度为 50%和 90% 的去除率)和在干燥条件下比具有 {012} 晶面的 α -Fe 2 O 3纳米粒子、α-Fe 2 O 3更高的 CO 2选择性具有{001}面的纳米片和商业α-Fe 2 O 3。NR-{110} 还表现出优异的耐水性(在去除 1,2-二氯苯时没有表现出源自水的竞争吸附的“V 形”曲线)和更好的稳定性。基于吡啶吸附傅里叶变换红外和 X 射线光电子能谱的光谱证据、基于 O 2程序升温脱附、H 2程序升温还原和 H 2的化学吸附分析O 程序升温脱附和理论计算表明,较高丰度的路易斯和布朗斯台德酸位点、较高的表面活性氧浓度、更多的负吸附能和较低的与(110)面相关的 C-Cl 键断裂能垒共同使快速反应动力学和更彻底的污染物破坏。此外,水的晶面特异性相互作用模式赋予了更大的耐水性,并且(110)晶面上丰富的布朗斯台德酸位有效地提供了H +以防止氯离子的积累,从而提高稳定性。
更新日期:2022-08-11
down
wechat
bug