当前位置: X-MOL 学术Sens. Actuators B Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impedimetric sensing of α-amino acids driven by micro-patterned 1,8-Diazafluoren-9-one into titania- boron- doped maze-like nanocarbons
Sensors and Actuators B: Chemical ( IF 8.0 ) Pub Date : 2022-08-09 , DOI: 10.1016/j.snb.2022.132459
Mattia Pierpaoli , Aneta Lewkowicz , Bartłomiej Dec , Małgorzata Nadolska , Robert Bogdanowicz

The development of impedimetric, non-faradaic label-free sensors for the detection of α-amino acids constitutes a trailblazing technology for the fast and inexpensive quantification of such biomarkers. Since α-amino acids, such as glycine and sarcosine, are basic constituents in biological processes, a variation in their concentration may be an indicator of cardiovascular diseases and metabolic disorders or neurological conditions. The unique properties, including maze-like porosity along with excellent electron transfer behavior, make boron-doped carbon nanowalls (BCNW) an ideal transducer for electrochemical sensing. In order to realize a non-faradaic impedimetric sensor for the detection of α-amino acids, 1,8-diazafluoren-9-one (DFO), a fluorophore commonly used in forensic science, was dispersed into Ti-sol precursor and deposited over a BCNW substrate by spin-coating. Data mining tools have been applied to the raw impedimetric data to directly predict the glycine concentration and to support the underlying material-interface interaction. The developed sensor revealed high selectivity and reproducibility toward glycine and other α-amino acids (phenylamine, sarcosine and tryptophan) and no selectivity toward β-alanine, γ-aminobutyric acid or taurine. The application of density-functional theory (DFT) studies supported the higher affinity with the highest adsorption energy for the reaction product of DFO with glycine. A detection limit of 51 nM was found for glycine.



中文翻译:

由微图案 1,8-Diazafluoren-9-one 驱动的 α-氨基酸的阻抗传感进入二氧化钛-硼掺杂的迷宫状纳米碳

用于检测 α-氨基酸的阻抗、非法拉第无标记传感器的开发构成了对此类生物标志物进行快速且廉价量化的开创性技术。由于 α-氨基酸,如甘氨酸和肌氨酸,是生物过程中的基本成分,因此它们的浓度变化可能是心血管疾病和代谢紊乱或神经系统疾病的指标。独特的特性,包括迷宫般的孔隙率以及出色的电子转移行为,使掺硼碳纳米壁 (BCNW) 成为电化学传感的理想换能器。为了实现一种非法拉第阻抗传感器,用于检测法医学中常用的荧光团 1,8-diazafluoren-9-one (DFO),分散在Ti-sol前体中并通过旋涂沉积在BCNW基板上。数据挖掘工具已应用于原始阻抗数据,以直接预测甘氨酸浓度并支持潜在的材料界面相互作用。开发的传感器对甘氨酸和其他 α-氨基酸(苯胺、肌氨酸和色氨酸)具有高选择性和重现性,而对 β-丙氨酸、γ-氨基丁酸或牛磺酸没有选择性。密度泛函理论 (DFT) 研究的应用支持 DFO 与甘氨酸的反应产物具有更高的亲和力和最高的吸附能。发现甘氨酸的检测限为 51 nM。数据挖掘工具已应用于原始阻抗数据,以直接预测甘氨酸浓度并支持潜在的材料界面相互作用。开发的传感器对甘氨酸和其他 α-氨基酸(苯胺、肌氨酸和色氨酸)具有高选择性和重现性,而对 β-丙氨酸、γ-氨基丁酸或牛磺酸没有选择性。密度泛函理论 (DFT) 研究的应用支持 DFO 与甘氨酸的反应产物具有更高的亲和力和最高的吸附能。发现甘氨酸的检测限为 51 nM。数据挖掘工具已应用于原始阻抗数据,以直接预测甘氨酸浓度并支持潜在的材料界面相互作用。开发的传感器对甘氨酸和其他 α-氨基酸(苯胺、肌氨酸和色氨酸)具有高选择性和重现性,而对 β-丙氨酸、γ-氨基丁酸或牛磺酸没有选择性。密度泛函理论 (DFT) 研究的应用支持 DFO 与甘氨酸的反应产物具有更高的亲和力和最高的吸附能。发现甘氨酸的检测限为 51 nM。密度泛函理论 (DFT) 研究的应用支持 DFO 与甘氨酸的反应产物具有更高的亲和力和最高的吸附能。发现甘氨酸的检测限为 51 nM。密度泛函理论 (DFT) 研究的应用支持 DFO 与甘氨酸的反应产物具有更高的亲和力和最高的吸附能。发现甘氨酸的检测限为 51 nM。

更新日期:2022-08-10
down
wechat
bug