当前位置: X-MOL 学术J. Phys. Condens. Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced performance of p-type SnO x thin film transistors through defect compensation
Journal of Physics: Condensed Matter ( IF 2.3 ) Pub Date : 2022-08-03 , DOI: 10.1088/1361-648x/ac8464
Wei Zhang 1 , Ruohao Hong 2 , Wenjing Qin 1, 2 , Yawei Lv 2 , Jianmin Ma 2 , Lei Liao 2 , Kenli Li 3 , Changzhong Jiang 2
Affiliation  

Due to the unique outermost orbitals of Sn, hole carriers in tin monoxide (SnO) possess small effective mass and high mobility among oxide semiconductors, making it a promising p-channel material for thin film field-effect transistors (TFTs). However, the Sn vacancy induced field-effect mobility deterioration and threshold voltage (V th) shift in experiments greatly limit its application in complementary metal-oxide-semiconductor (CMOS) transistors. In this study, the internal mechanism of vacancy defect compensation by aluminum (Al) doping in SnO x film is studied combining experiments with the density functional theory (DFT). The doping is achieved by an argon (Ar) plasma treatment of Al2O3 deposited onto the SnO x film, in which the Al2O3 provides both the surface passivation and Al doping source. Experimental results show a wide V th modulation range (6.08 to −19.77 V) and notable mobility enhancement (11.56 cm2V−1s−1) in the SnO x TFTs after the Al doping by Ar plasma. DFT results reveal that the most possible positions of Al in SnO and SnO2 segments are the compensation to Sn vacancy and interstitial. The compensation will create an n-type doping effect and improve the hole carrier transport by reducing the hole effective mass (m h*), which is responsible for the device performance variation, while the interstitial in the SnO2 segment can hardly affect the valence transport of the film. The defect compensation is suitable for the electronic property modulation of SnO towards the high-performance CMOS application.

中文翻译:

通过缺陷补偿提高 p 型 SnO x 薄膜晶体管的性能

由于 Sn 独特的最外层轨道,一氧化锡 (SnO) 中的空穴载流子在氧化物半导体中具有小的有效质量和高迁移率,使其成为薄膜场效应晶体管 (TFT) 的有前途的 p 沟道材料。然而,Sn空位引起的场效应迁移率恶化和阈值电压(V th ) 实验中的转变极大地限制了其在互补金属氧化物半导体 (CMOS) 晶体管中的应用。在这项研究中,铝 (Al) 掺杂在 SnO 中补偿空位缺陷的内部机制 X 结合实验和密度泛函理论(DFT)对薄膜进行了研究。掺杂是通过对沉积在 SnO 上的Al 2 O 3进行氩 (Ar) 等离子体处理来实现的 X 薄膜,其中Al 2 O 3提供表面钝化和Al掺杂源。实验结果表明广泛V SnO 的第 th调制范围(6.08 至 -19.77 V)和显着的迁移率增强(11.56 cm 2 V -1 s -1 ) X 通过 Ar 等离子体掺杂 Al 后的 TFT。DFT 结果表明,Al 在SnO 和SnO 2链段中最可能的位置是对Sn 空位和间隙的补偿。补偿将产生 n 型掺杂效应并通过减少空穴有效质量来改善空穴载流子传输( h *),这是造成器件性能变化的原因,而SnO 2段的间隙几乎不会影响薄膜的价态传输。缺陷补偿适用于对高性能 CMOS 应用的 SnO 的电子特性调制。
更新日期:2022-08-03
down
wechat
bug