当前位置: X-MOL 学术Gas Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of selective gas permeation channels in polymeric membranes using nanocage tuned ionic liquid/MIL-53 (Al) filler nanoparticles for effective CO2 separation
Gas Science and Engineering ( IF 5.285 ) Pub Date : 2022-08-08 , DOI: 10.1016/j.jngse.2022.104728
B. Sasikumar , G. Arthanareeswaran

Polymeric membranes with metal-organic frameworks (MOFs) holds great potential for gas separation. However, finely tailoring the adhesion between MOFs and polymer matrices is crucial in reducing the membranes defective structure. The partial inorganic structure of MOFs limits the interaction with the polymer matrix, which tends to agglomerate on the membranes. Herein, an interfacial strategy is reported by post-synthetic functionalization of MIL-53 (Al) with ionic liquids (ILs) to construct IL@MIL-53 (Al) composite to improve interfacial interaction among filler and polysulfone (PSf) matrices. At 2 wt% of IL@MIL-53 (Al), the composite membranes tensile strength and % elongation were enhanced by about 66.13 and 97.40% compared to the neat PSf membrane. The intimate contact between IL@MIL-53 (Al) and PSf matrices renders uniform dispersion evident from morphological studies. The gas permeation properties were evaluated for carbondioxide (CO2), nitrogen (N2), methane (CH4) gases. At 2 wt% of MIIL-53 (Al) nanofiller, the CO2 permeance was found to be 37.56 ± 0.63 GPU which was significantly higher than the neat PSf membrane. Besides, the CO2 permeance of the PSf/2% IL@MIL-53 (Al) membrane was noted to be 34.23 ± 0.68 GPU, whereas the CO2/CH4 and CO2/N2 selectivities were 48.64 and 49.19% higher than the neat membrane. As the pressure increased from 2 to 10 bar, the CO2, N2, and CH4 gas permeances in composite PSf membranes were decreased, whereas the CO2/N2 and CO2/CH4 selectivities were observed to be increased. The introduction of ILs into the MOFs pores will tune pore size with the enhanced adsorption selectivity due to its high CO2 solubility and affinity of ILs. ILs functionalization on the cores of the MIL-53 (Al) structure is an effective strategy, which opens up the selection to a broad range of fillers in the aspect of commercialization.



中文翻译:

使用纳米笼调谐离子液体/MIL-53 (Al) 填料纳米粒子在聚合物膜中构建选择性气体渗透通道以实现有效的 CO2 分离

具有金属有机骨架(MOF)的聚合物膜在气体分离方面具有巨大的潜力。然而,精细调整 MOF 和聚合物基质之间的粘附力对于减少膜缺陷结构至关重要。MOF 的部分无机结构限制了与聚合物基质的相互作用,聚合物基质倾向于在膜上聚集。本文报道了一种界面策略,即通过MIL-53 (Al) 与离子液体(ILs) 的后合成功能化来构建 IL@MIL-53 (Al) 复合材料,以改善填料和聚砜 (PSf) 基质之间的界面相互作用。在 2 wt% 的 IL@MIL-53 (Al) 下,复合膜的拉伸强度与纯 PSf 膜相比,伸长率和%伸长率分别提高了约 66.13% 和 97.40%。IL@MIL-53 (Al) 和 PSf 矩阵之间的密切接触使得从形态学研究中可以明显看出均匀分散。对二氧化碳(CO 2)、氮气(N2)、甲烷(CH4)气体的气体渗透性能进行了评价。在 2 wt% 的 MIIL-53 (Al) 纳米填料下,发现 CO2渗透率为 37.56 ± 0.63 GPU,显着高于纯 PSf 膜。此外,PSf/2% IL@MIL-53 (Al) 膜的 CO 2渗透率为 34.23 ± 0.68 GPU,而 CO2/CH4和 CO2/N2选择性分别比纯膜高 48.64% 和 49.19%。随着压力从 2 巴增加到 10 巴,复合 PSf 膜中的 CO 2、N 2和 CH 4气体渗透率降低,而观察到CO 2 /N 2和 CO 2 /CH 4选择性增加。由于其高 CO 2溶解度和 ILs 的亲和力,将 ILs 引入 MOFs 孔中将调节孔径并提高吸附选择性。在 MIL-53 (Al) 结构的核心上进行 ILs 功能化是一种有效的策略,它在商业化方面为广泛的填料打开了选择的大门。

更新日期:2022-08-11
down
wechat
bug