当前位置: X-MOL 学术Limnol. Oceanogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Summer ecosystem structure in mountain lakes linked to interannual variability of lake ice, snowpack, and landscape attributes
Limnology and Oceanography ( IF 3.8 ) Pub Date : 2022-07-30 , DOI: 10.1002/lno.12188
Stephen M. Powers 1 , Steven C. Fradkin 2 , William Baccus 2, 3 , Carmen Archambault 4 , John R. Boetsch 3 , Matthew R. Brousil 5 , Rebecca Lofgren 6 , Ashley Rawhouser 4 , Stephanie E. Hampton 7
Affiliation  

Mountain lakes experience interannual variability in spring snowpack and ice cover that can lead to differences in physical, chemical, and biological properties in the succeeding summer. Lake studies that capture extreme years of snow and ice would be useful to understand and anticipate effects of climate change, but such data are rare for remote mountain lakes. Monitoring of lakes in Olympic, North Cascades, and Mount Rainier National Parks from 2007 to 2018 allowed us to examine limnological differences along interannual and elevation-driven climate gradients that included unusually high (2011–2012) and 100-yr record low (2015) snowpack years. Years with lower spring snowpack had earlier ice-out. Across lakes, our analysis suggested an average of 0.075°C lake warming per day of lost ice duration (0.525°C per week), giving rise to other ecosystem changes linked to temperature such as lower dissolved oxygen, higher total dissolved N, higher chlorophyll, and higher abundance of cladoceran zooplankton. Conversely, in years with higher snowpack and a shorter ice-free season, lakes were colder and clearer (1 m deeper Secchi depth for every 1 m May snow water equivalent), with more dilute ions as well as lower algal biomass and zooplankton abundance. These results add to evidence that changes in snowpack or ice-out dates alter mountain lake ecology through multiple processes associated with hydrology, terrestrial-aquatic connection, water temperature, productivity, ion composition, and plankton communities.

中文翻译:

山区湖泊夏季生态系统结构与湖冰、积雪和景观属性的年际变化有关

山区湖泊在春季积雪和冰盖方面经历年际变化,这可能导致接下来的夏季物理、化学和生物特性的差异。捕捉极端年份冰雪的湖泊研究有助于理解和预测气候变化的影响,但这样的数据对于偏远的山区湖泊来说很少见。从 2007 年到 2018 年监测奥林匹克、北瀑布和雷尼尔山国家公园的湖泊使我们能够检查沿年际和海拔驱动的气候梯度的湖泊学差异,包括异常高(2011-2012 年)和 100 年历史最低点(2015 年)积雪年。春季积雪较少的年份较早结冰。在整个湖泊中,我们的分析表明,每天失去的冰持续时间平均会导致 0.075°C 的湖泊变暖(每周 0.525°C),引起与温度相关的其他生态系统变化,例如较低的溶解氧、较高的总溶解氮、较高的叶绿素和较高的枝角类浮游动物丰度。相反,在积雪量较高且无冰季节较短的年份,湖泊更冷、更清澈(每 1 米 5 月雪水当量,塞奇深度 1 米),稀释离子更多,藻类生物量和浮游动物丰度更低。这些结果增加了证据,表明积雪或结冰日期的变化通过与水文、陆水连接、水温、生产力、离子组成和浮游生物群落相关的多个过程改变了高山湖泊生态。相反,在积雪量较高且无冰季节较短的年份,湖泊更冷、更清澈(每 1 米 5 月雪水当量,塞奇深度 1 米),稀释离子更多,藻类生物量和浮游动物丰度更低。这些结果增加了证据,表明积雪或结冰日期的变化通过与水文、陆水连接、水温、生产力、离子组成和浮游生物群落相关的多个过程改变了高山湖泊生态。相反,在积雪量较高且无冰季节较短的年份,湖泊更冷、更清澈(每 1 米 5 月雪水当量,塞奇深度 1 米),稀释离子更多,藻类生物量和浮游动物丰度更低。这些结果增加了证据,表明积雪或结冰日期的变化通过与水文、陆水连接、水温、生产力、离子组成和浮游生物群落相关的多个过程改变了高山湖泊生态。
更新日期:2022-07-30
down
wechat
bug