当前位置: X-MOL 学术Water Resour. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Decoupled Finite Particle Method With Normalized Kernel (DFPM-NK): A Computationally Efficient Method for Simulating Solute Transport in Heterogeneous Porous Media
Water Resources Research ( IF 4.6 ) Pub Date : 2022-08-03 , DOI: 10.1029/2022wr032308
Tian Jiao 1, 2 , Ming Ye 2 , Menggui Jin 1 , Jing Yang 3
Affiliation  

Previous studies found that Finite Particle Method (FPM), an improved Smoothed Particle Hydrodynamics (SPH) method, yields more accurate solutions of the advection-dispersion equation (ADE) than SPH method does when simulating solute transport in heterogeneous porous media. FPM however is computationally more expensive than SPH because FPM needs to solve a correction matrix equation for each particle. While decoupled FPM (DFPM) can reduce computational cost of FPM by using diagonal terms of the matrix equation, DFPM is less accurate than FPM due to discarding off-diagonal terms of the matrix equation. This study develops the Decoupled Finite Particle Method with Normalized Kernel (DFPM-NK) to improve computational accuracy of DFPM by using normalized kernels in DFPM. We evaluate computational performance of SPH, FPM, DFPM, and DFPM-NK using two numerical experiments of ADE with non-reactive and reactive solute transport in a heterogeneous aquifer. Results of the two experiments indicate that, among the four methods, SPH has the least computational time, but has the worst computational accuracy. DFPM-NK is substantially more efficient than FPM, and has similar accuracy of FPM. On the other hand, DFPM-NK and DFPM have similar computational cost, but DFMP-NK is significantly more accurate than DFPM, especially for heterogeneous hydraulic conductivity fields. We thus recommend to use DFPM-NK for computationally expensive ADE problems without sacrificing computational accuracy.

中文翻译:

带归一化核的解耦有限粒子法 (DFPM-NK):一种用于模拟非均质多孔介质中溶质传输的高效计算方法

先前的研究发现,在模拟非均质多孔介质中的溶质传输时,有限粒子法 (FPM) 是一种改进的平滑粒子流体动力学 (SPH) 方法,与 SPH 方法相比,它可以产生更准确的平流-弥散方程 (ADE) 解。然而,FPM 在计算上比 SPH 更昂贵,因为 FPM 需要为每个粒子求解一个校正矩阵方程。虽然解耦 FPM (DFPM) 可以通过使用矩阵方程的对角项来降低 FPM 的计算成本,但由于丢弃了矩阵方程的非对角项,DFPM 不如 FPM 准确。本研究开发了带归一化核的解耦有限粒子方法 (DFPM-NK),通过在 DFPM 中使用归一化核来提高 DFPM 的计算精度。我们评估 SPH、FPM、DFPM、和 DFPM-NK 使用 ADE 的两个数值实验,在非均质含水层中进行非反应性和反应性溶质迁移。两个实验的结果表明,在四种方法中,SPH 的计算时间最少,但计算精度最差。DFPM-NK 比 FPM 效率要高得多,并且具有与 FPM 相似的精度。另一方面,DFPM-NK 和 DFPM 具有相似的计算成本,但 DFMP-NK 比 DFPM 精确得多,尤其是对于非均质水力传导率场。因此,我们建议在不牺牲计算精度的情况下,将 DFPM-NK 用于计算昂贵的 ADE 问题。SPH 的计算时间最少,但计算精度最差。DFPM-NK 比 FPM 效率要高得多,并且具有与 FPM 相似的精度。另一方面,DFPM-NK 和 DFPM 具有相似的计算成本,但 DFMP-NK 比 DFPM 精确得多,尤其是对于非均质水力传导率场。因此,我们建议在不牺牲计算精度的情况下,将 DFPM-NK 用于计算昂贵的 ADE 问题。SPH 的计算时间最少,但计算精度最差。DFPM-NK 比 FPM 效率要高得多,并且具有与 FPM 相似的精度。另一方面,DFPM-NK 和 DFPM 具有相似的计算成本,但 DFMP-NK 比 DFPM 精确得多,尤其是对于非均质水力传导率场。因此,我们建议在不牺牲计算精度的情况下,将 DFPM-NK 用于计算昂贵的 ADE 问题。
更新日期:2022-08-03
down
wechat
bug