当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Smoothed particle hydrodynamics modeling and analysis of oxide reduction process for uranium oxides
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2022-08-04 , DOI: 10.1016/j.ces.2022.117974
Jin-Woo Kim , Tae-Sic Yoo , Eung Soo Kim , Su-Jong Yoon

A common kinetic feature for oxide reduction chemical/electrochemical processes is oxygen transport via a porous metallic layer, which has been considered as a rate-determining step for reducing uranium oxides to metallic uranium. Accounting this kinetic behavior must involve the resolution of the moving reactive interface between shrinking oxide and expanding metal phases. This study presents a numerical model using smoothed particles hydrodynamics (SPH) to effectively deal with the evolution of the shrinking core reaction interface and oxygen transport via mass transfer of lithium oxide (Li2O) species in multiple mass transfer domains. We successfully validated the proposed model against a theoretical derivation for the oxide reduction process handling a shrinking oxide core with molten salt and metal ash medium on a simple planar geometry. Armed with successful validation results, the model examined a realistic reactant geometry to extend the arguments beyond the one-dimensional analyses, allowing the proposed model to apply to general application scenarios with multi-dimensional geometry. This study demonstrated that the proposed model could simulate and evaluate an arbitrary reaction basket design without iterative experimental trials, which is prohibitive for a scaled high-temperature molten salt study in an inert environment. The construct potentially provides not only deep insights on multiphysics behaviors governing the process dynamics but also a robust framework for evaluating and screening candidate basket designs in the most cost-effective manner.



中文翻译:

铀氧化物氧化物还原过程的平滑粒子流体动力学建模与分析

氧化物还原化学/电化学过程的一个常见动力学特征是通过多孔金属层传输氧气,这被认为是将铀氧化物还原为金属铀的速率决定步骤。考虑到这种动力学行为,必须解决收缩的氧化物和膨胀的金属相之间的移动反应界面。本研究提出了一个使用平滑粒子流体动力学 (SPH) 的数值模型,以有效地处理收缩核心反应界面的演变和通过氧化锂 (Li 2O) 多个传质域中的物质。我们成功地验证了所提出的模型与氧化物还原过程的理论推导,该过程在简单的平面几何形状上处理具有熔盐和金属灰介质的收缩氧化物核心。凭借成功的验证结果,该模型检查了真实的反应物几何形状,以将论点扩展到一维分析之外,从而使所提出的模型适用于具有多维几何形状的一般应用场景。这项研究表明,所提出的模型可以在没有迭代实验试验的情况下模拟和评估任意反应篮设计,这对于惰性环境中的大规模高温熔盐研究来说是禁止的。

更新日期:2022-08-07
down
wechat
bug