当前位置: X-MOL 学术Int. J. Plasticity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electro-thermal-mechanical coupled crystal plasticity modeling of Ni-based superalloy during electrically assisted deformation
International Journal of Plasticity ( IF 9.4 ) Pub Date : 2022-08-05 , DOI: 10.1016/j.ijplas.2022.103397
Jia Gao , Hongwei Li , Xinxin Sun , Xin Zhang , Mei Zhan

Electrically assisted (EA) formation has attracted much attention in recent years. However, the multiscale deformation mechanism of materials under multifield (electrical, thermal, and mechanical fields) conditions remains unclear. In this study, an electro-thermal-mechanical crystal plasticity model was developed on the basis of the experimental findings of thermal and nonthermal effects of the pulse current in a superalloy during EA deformation. In this model, electrical resistivity was related to the applied current direction and crystallographic defects (e.g., dislocations) to account for the Joule heating effect. Additionally, the effects of electric current on the dislocation slip—in terms of reduction in the activation energy, softening of the slip resistance, and increase in the mobile dislocation evolution rate—were considered to describe the nonthermal effect. The model developed herein demonstrated that the Joule heating effect is locally distributed and is quantitatively related to the deformation, grain orientation, and dislocation density; the current-density threshold, which plays a role in reducing the dislocation density and slip resistance, was also determined. The existence of the stress difference under EA tension was compared with that under thermal loading with the same temperature history and was attributed to two aspects: (a) nonthermal effects, excluding similar thermal effects, and (b) local Joule heating effect. This model provides a method to quantitatively analyze the EA formation process, which will benefit process control.



中文翻译:

电辅助变形过程中镍基高温合金的电-热-机耦合晶体塑性建模

近年来,电辅助(EA)形成引起了广泛关注。然而,材料在多场(电、热和机械场)条件下的多尺度变形机制仍不清楚。在这项研究中,基于 EA 变形过程中脉冲电流在高温合金中的热效应和非热效应的实验结果,建立了电-热-机械晶体塑性模型。在这个模型中,电阻率与施加的电流方向和晶体缺陷(例如位错)有关,以解释焦耳热效应。此外,电流对位错滑移的影响——就活化能的降低、滑移阻力的软化而言,和移动位错演化速率的增加——被认为是描述非热效应。本文开发的模型表明焦耳热效应是局部分布的,并且与变形、晶粒取向和位错密度定量相关;还确定了电流密度阈值,该阈值在降低位错密度和抗滑移方面起作用。将EA张力下应力差异的存在与具有相同温度历史的热载荷下的应力差异的存在归因于两个方面:(a)非热效应,排除类似的热效应,以及(b)局部焦耳热效应。该模型提供了一种定量分析EA形成过程的方法,有利于过程控制。本文开发的模型表明焦耳热效应是局部分布的,并且与变形、晶粒取向和位错密度定量相关;还确定了电流密度阈值,该阈值在降低位错密度和抗滑移方面起作用。将EA张力下应力差异的存在与具有相同温度历史的热载荷下的应力差异的存在归因于两个方面:(a)非热效应,排除类似的热效应,以及(b)局部焦耳热效应。该模型提供了一种定量分析EA形成过程的方法,有利于过程控制。本文开发的模型表明焦耳热效应是局部分布的,并且与变形、晶粒取向和位错密度定量相关;还确定了电流密度阈值,该阈值在降低位错密度和抗滑移方面起作用。将EA张力下应力差异的存在与具有相同温度历史的热载荷下的应力差异的存在归因于两个方面:(a)非热效应,排除类似的热效应,以及(b)局部焦耳热效应。该模型提供了一种定量分析EA形成过程的方法,有利于过程控制。还确定了电流密度阈值,该阈值在降低位错密度和抗滑移方面起作用。将EA张力下应力差异的存在与具有相同温度历史的热载荷下的应力差异的存在归因于两个方面:(a)非热效应,排除类似的热效应,以及(b)局部焦耳热效应。该模型提供了一种定量分析EA形成过程的方法,有利于过程控制。还确定了电流密度阈值,该阈值在降低位错密度和抗滑移方面起作用。将EA张力下应力差异的存在与具有相同温度历史的热载荷下的应力差异的存在归因于两个方面:(a)非热效应,排除类似的热效应,以及(b)局部焦耳热效应。该模型提供了一种定量分析EA形成过程的方法,有利于过程控制。(b) 局部焦耳热效应。该模型提供了一种定量分析EA形成过程的方法,有利于过程控制。(b) 局部焦耳热效应。该模型提供了一种定量分析EA形成过程的方法,有利于过程控制。

更新日期:2022-08-05
down
wechat
bug