当前位置: X-MOL 学术Environ. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The effect of pore geometry in constitutive hysteretic models for unsaturated water flow
Environmental Fluid Mechanics ( IF 1.7 ) Pub Date : 2022-08-06 , DOI: 10.1007/s10652-022-09891-0
Mariangeles Soldi , Luis Guarracino , Damien Jougnot

Water flow in porous media is strongly controlled by the microscale structure of the pore space. Therefore, understanding the dynamics at pore scale is fundamental to better estimate and describe the hydraulic properties and phenomena associated to water flow which are observed in a macroscale such as field or laboratory experiments. Pore geometry plays a key role since its variations cause modifications in hydraulic behaviour at the macroscale. In this study, we develop a new analytical model which represents the pore space of a medium as a bundle of tortuous sinusoidal capillary tubes with periodic pore throats and a fractal pore-size distribution. This model is compared with a previous model of straight constrictive capillary tubes in order to analyze the effect of pore geometry on hydraulic properties under partially saturated conditions. The comparison of the constitutive models shows that macroscopic hydraulic properties, porosity and permeability, present the strongest differences due to changes in the pore geometry. Nonetheless, no variations are observed in the relative hydraulic properties, effective saturation and relative permeability. The new model has been tested with experimental data consisting on sets of porosity-permeability, water content-pressure head, conductivity-pressure head, and hysteretic water content-pressure values. In all cases, the model is able to satisfactorily reproduce the data. This new analytical model presents an improvement over the previous model since the smoother variation of the pore radii allows a more realistic representation of the porous medium.



中文翻译:

非饱和水流本构滞后模型中孔隙几何形状的影响

多孔介质中的水流受到孔隙空间的微观结构的强烈控制。因此,了解孔隙尺度的动力学对于更好地估计和描述与在宏观尺度(如现场或实验室实验)中观察到的水流相关的水力特性和现象至关重要。孔隙几何形状起着关键作用,因为它的变化会导致宏观水力行为的改变。在这项研究中,我们开发了一种新的分析模型,该模型将介质的孔隙空间表示为一束具有周期性孔喉和分形孔径分布的曲折正弦毛细管。为了分析孔隙几何形状对部分饱和条件下水力特性的影响,该模型与之前的直收缩毛细管模型进行了比较。本构模型的比较表明,宏观水力特性、孔隙度和渗透率由于孔隙几何形状的变化而呈现出最强的差异。尽管如此,在相对水力特性、有效饱和度和相对渗透率方面没有观察到变化。新模型已经用由孔隙度-渗透率、含水量-压力水头、电导率-压力水头和滞后含水量-压力值组成的实验数据进行了测试。在所有情况下,该模型都能够令人满意地再现数据。这种新的分析模型比以前的模型有所改进,因为孔隙半径的更平滑变化允许更真实地表示多孔介质。由于孔隙几何形状的变化,孔隙度和渗透率呈现出最强的差异。尽管如此,在相对水力特性、有效饱和度和相对渗透率方面没有观察到变化。新模型已经用由孔隙度-渗透率、含水量-压力水头、电导率-压力水头和滞后含水量-压力值组成的实验数据进行了测试。在所有情况下,该模型都能够令人满意地再现数据。这种新的分析模型比以前的模型有所改进,因为孔隙半径的更平滑变化允许更真实地表示多孔介质。由于孔隙几何形状的变化,孔隙度和渗透率呈现出最强的差异。尽管如此,在相对水力特性、有效饱和度和相对渗透率方面没有观察到变化。新模型已经用由孔隙度-渗透率、含水量-压力水头、电导率-压力水头和滞后含水量-压力值组成的实验数据进行了测试。在所有情况下,该模型都能够令人满意地再现数据。这种新的分析模型比以前的模型有所改进,因为孔隙半径的更平滑变化允许更真实地表示多孔介质。有效饱和度和相对渗透率。新模型已经用由孔隙度-渗透率、含水量-压力水头、电导率-压力水头和滞后含水量-压力值组成的实验数据进行了测试。在所有情况下,该模型都能够令人满意地再现数据。这种新的分析模型比以前的模型有所改进,因为孔隙半径的更平滑变化允许更真实地表示多孔介质。有效饱和度和相对渗透率。新模型已经用由孔隙度-渗透率、含水量-压力水头、电导率-压力水头和滞后含水量-压力值组成的实验数据进行了测试。在所有情况下,该模型都能够令人满意地再现数据。这种新的分析模型比以前的模型有所改进,因为孔隙半径的更平滑变化允许更真实地表示多孔介质。

更新日期:2022-08-06
down
wechat
bug