当前位置: X-MOL 学术Int. J. Appl. Earth Obs. Geoinf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rethinking of learning-based 3D keypoints detection for large-scale point clouds registration
International Journal of Applied Earth Observation and Geoinformation ( IF 7.6 ) Pub Date : 2022-08-05 , DOI: 10.1016/j.jag.2022.102944
ShaoCong Liu , Tao Wang , Yan Zhang , Ruqin Zhou , Chenguang Dai , Yongsheng Zhang , Haozhen Lei , Hanyun Wang

The main solution for large-scale point clouds registration is to first obtain a set of matched 3D keypoint pairs and then accomplish the point cloud registration task based on these matched keypoint pairs. However, at present, many methods study the feature descriptors in the point clouds registration task, but few methods discuss the 3D keypoints detection issues. The commonly used 3D keypoints detection strategy is the voxel-grid-based downsampling method, and the detected 3D keypoints are usually with a relatively huge amount and also with no explicit geometrical properties, which finally leads to a low inlier ratio. In this study, we rethink the 3D keypoints detection problem for large-scale point clouds with deep learning. Specifically, we discuss four kinds of 3D keypoints detection methods based on the joint keypoint detection and description learning framework D3Feat, and carry out extensive analyses on both the indoor large-scale point clouds dataset 3DMatch and the outdoor large-scale point clouds dataset KITTI Odometry. Experimental results demonstrate that the Multi-layer Perceptron (MLP) based method achieves the best inlier ratios under the different numbers of extracted 3D keypoints on both the indoor and outdoor large-scale point clouds. Further, we test these four kinds of keypoints detection methods under the application of large-scale point clouds registration, and the MLP-based method also achieves the state-of-the-art registration performance.



中文翻译:

重新思考基于学习的大规模点云配准 3D 关键点检测

大规模点云配准的主要解决方案是首先获得一组匹配的3D关键点对,然后基于这些匹配的关键点对完成点云配准任务。然而,目前,许多方法研究点云配准任务中的特征描述符,但很少有方法讨论3D关键点检测问题。常用的 3D 关键点检测策略是基于体素网格的下采样方法,检测到的 3D 关键点通常数量较多且没有明确的几何属性,最终导致内点率较低。在这项研究中,我们重新思考了具有深度学习的大规模点云的 3D 关键点检测问题。具体来说,我们基于联合关键点检测和描述学习框架 D3Feat 讨论了四种 3D 关键点检测方法,并对室内大规模点云数据集 3DMatch 和室外大规模点云数据集 KITTI Odometry 进行了广泛的分析。实验结果表明,基于多层感知器 (MLP) 的方法在室内和室外大规模点云上提取的 3D 关键点的不同数量下均实现了最佳内点比。此外,我们在大规模点云配准的应用下测试了这四种关键点检测方法,基于 MLP 的方法也达到了最先进的配准性能。并对室内大规模点云数据集 3DMatch 和室外大规模点云数据集 KITTI Odometry 进行了广泛的分析。实验结果表明,基于多层感知器 (MLP) 的方法在室内和室外大规模点云上提取的 3D 关键点的不同数量下均实现了最佳内点比。此外,我们在大规模点云配准的应用下测试了这四种关键点检测方法,基于 MLP 的方法也达到了最先进的配准性能。并对室内大规模点云数据集 3DMatch 和室外大规模点云数据集 KITTI Odometry 进行了广泛的分析。实验结果表明,基于多层感知器 (MLP) 的方法在室内和室外大规模点云上提取的 3D 关键点的不同数量下均实现了最佳内点比。此外,我们在大规模点云配准的应用下测试了这四种关键点检测方法,基于 MLP 的方法也达到了最先进的配准性能。实验结果表明,基于多层感知器 (MLP) 的方法在室内和室外大规模点云上提取的 3D 关键点的不同数量下均实现了最佳内点比。此外,我们在大规模点云配准的应用下测试了这四种关键点检测方法,基于 MLP 的方法也达到了最先进的配准性能。实验结果表明,基于多层感知器 (MLP) 的方法在室内和室外大规模点云上提取的 3D 关键点的不同数量下均实现了最佳内点比。此外,我们在大规模点云配准的应用下测试了这四种关键点检测方法,基于 MLP 的方法也达到了最先进的配准性能。

更新日期:2022-08-05
down
wechat
bug