当前位置: X-MOL 学术Microsyst. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and fabrication of micromanipulation tools for electrochemical-based manipulation of metal microcomponents
Microsystem Technologies ( IF 1.6 ) Pub Date : 2022-08-05 , DOI: 10.1007/s00542-022-05346-0
Dongjie Li , Fuyue Zhang , Liang Sun , Zhiqian Fan

Micromanipulation tools are the basis for the development of micromanipulation technology. The problem of reliable, accurate, and non-destructive manipulation of micro-components using manipulation tools smaller than the object’s size is still unsolved. In this paper, a micro-manipulation tool for electrochemical-based manipulation of metal micro-components was designed and fabricated. Firstly, by theoretical analysis, the appropriate micropipette shape and nozzle size are derived. Then, with the finite element simulations and experiments, the pulling process effects of current, pull force, pulling velocity and cooling time on nozzle diameter are analyzed. Finally, the pipette nozzle diameters are set as the target value, the pulling parameters are optimized using the combination of the adaptive genetic algorithm and BP (Back Propagation) neural network. Through experimental verification of Optimal Parameters, the maximum error of the diameters of the pipette nozzle is only 0.84%. The micromanipulation tool can reliably and accurately manipulate objects larger than its size, and has high efficiency.



中文翻译:

用于金属微元件电化学操作的显微操作工具的设计和制造

显微操作工具是显微操作技术发展的基础。使用小于物体尺寸的操作工具对微组件进行可靠、准确和无损操作的问题仍未解决。在本文中,设计和制造了一种用于基于电化学操作金属微组件的微操作工具。首先,通过理论分析,推导出合适的微量移液管形状和喷嘴尺寸。然后,通过有限元模拟和实验,分析了电流、拉力、拉速和冷却时间对喷嘴直径的影响。最后,将移液器喷嘴直径设置为目标值,使用自适应遗传算法和BP(反向传播)神经网络的组合优化拉参数。通过Optimal Parameters的实验验证,移液器喷嘴直径的最大误差仅为0.84%。该显微操作工具能够可靠、准确地操作大于其尺寸的物体,并且效率高。

更新日期:2022-08-05
down
wechat
bug