当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing electrochemical nitrogen fixation by mimicking π back-donation on laser-tuned Lewis acid sites in noble-metal-molybdenum carbide
Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2022-08-05 , DOI: 10.1016/j.apcatb.2022.121777
Bin Chang , Haifeng Yuan , Lili Li , Jiayuan Yu , Xiaoyu Liu , Wanqiang Yu , Bo Wang , Lili Zhao , Xiaoyan Liu , Shuhui Sun , Hong Liu , Weijia Zhou

Conventional electrocatalysts underperform with reaction kinetics, nitrogen dissociation, and activated hydrogen recombination, demanding effective strategies for improving electrochemical nitrogen fixation. The challenge lies in the rational design of electron back-donating centers for nitrogen activation and hydrogen migration path optimization. This study proposes an effective laser-tuning strategy to construct noble-metal Lewis acid sites on molybdenum carbide (M-Mo2C, M = Ru, Rh, Pd, Ir), yielding a more active material system by mimicking π back-donation behavior. Laser-tuned Lewis acid sites can effectively break N≡N bonds, lower thermodynamic energy barrier of the rate-determining hydrogenation step (*NN → *N-NH), and optimize hydrogen migration pathway. The Rh-Mo2C shows superior NRR activity with NH3 yield of ∼26.3 µg h−1 cm−2cat. and Faradaic efficiency of ∼15.4%, which are 5.1- and 3.6-fold higher than those of Mo2C, respectively. This work demonstrates a unique and universal strategy for designing high-performance electrocatalysts by accurately manipulating electronic structure of active sites.



中文翻译:

通过模拟贵金属-碳化钼中激光调谐路易斯酸位上的 π 回馈来增强电化学固氮作用

传统的电催化剂在反应动力学、氮解离和活化氢重组方面表现不佳,需要有效的策略来改善电化学固氮。挑战在于合理设计用于氮活化和氢迁移路径优化的电子回馈中心。本研究提出了一种有效的激光调谐策略,在碳化钼(M-Mo 2 C,M = Ru,Rh,Pd,Ir)上构建贵金属路易斯酸位点,通过模拟 π 回馈产生更活跃的材料体系行为。激光调谐的路易斯酸位点可以有效地破坏 N≡N 键,降低限速加氢步骤 (*NN → *N-NH) 的热力学能垒,优化氢迁移途径。Rh-Mo 2C显示出优异的NRR活性,NH 3产量约为26.3 µg h -1 cm -2 cat。和法拉第效率约为 15.4%,分别比 Mo 2 C 高 5.1 倍和 3.6 倍。这项工作展示了一种通过准确操纵活性位点的电子结构来设计高性能电催化剂的独特而通用的策略。

更新日期:2022-08-05
down
wechat
bug