当前位置: X-MOL 学术J. Pet. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental investigation of internal and external flow fields of jetting nozzles with different structures
Journal of Petroleum Science and Engineering Pub Date : 2022-08-05 , DOI: 10.1016/j.petrol.2022.110891
Tianwen Jiang , Zhongwei Huang , Jingbin Li , Yisu Zhou , Chao Xiong

Jetting has been widely used in the petroleum fields, the nozzle has been investigated for a long time and the structure has been optimized for different applications as the key part of jetting. However, most of these researches are focused on the outer flow with simulations, the real flow characteristics are not been revealed clearly. A visual experimental platform was built with Particle Image Velocimetry (PIV) and a high-pressure pump. 40 nozzles of different profiles were machined and measured. The internal and outer flow fields were captured by PIV under low velocity, and the pressure drop and flow displacement were measured under high-pressure conditions in this paper. The jetting performance such as discharge coefficient, flow core length, jet angle, and velocity distributions were analyzed. The internal flow characteristics including the flow field near the nozzle wall were captured by PIV. The converging angle and the throat section length play an important role in the jetting performance and are suggested to be set to 15° and 3 times the nozzle diameter when designed. The throat length has little effect on the flow field of the streamlined nozzle compared to the cone-straight nozzle, especially the concave curve nozzle. The vortex generated at the corner and the entrance of the throat section can indicate the boundary layer separation and transition, which agrees with our previous simulation work. All work will provide theoretical support for the design of the nozzle on-site application.



中文翻译:

不同结构喷嘴内外流场的实验研究

喷射在石油领域得到了广泛的应用,喷嘴作为喷射的关键部分已经研究了很长时间,并针对不同的应用进行了结构优化。然而,这些研究大多集中在外部流动的模拟上,并没有清楚地揭示真实的流动特性。用粒子图像测速仪(PIV)和高压泵搭建了一个可视化实验平台。加工和测量了 40 个不同轮廓的喷嘴。本文通过PIV在低速条件下捕获内外流场,并在高压条件下测量了压降和流量位移。分析了流量系数、流芯长度、射流角度和速度分布等喷射性能。PIV 捕获了包括喷嘴壁附近流场在内的内部流动特性。收敛角和喉部长度对喷射性能有重要影响,设计时建议设置为15°和3倍喷嘴直径。与锥形直喷嘴相比,喉部长度对流线型喷嘴的流场影响较小,尤其是凹曲线喷嘴。拐角处和喉段入口处产生的涡流可以指示边界层的分离和过渡,这与我们之前的模拟工作一致。所有工作将为喷头现场应用的设计提供理论支持。收敛角和喉部长度对喷射性能有重要影响,设计时建议设置为15°和3倍喷嘴直径。与锥形直喷嘴相比,喉部长度对流线型喷嘴的流场影响较小,尤其是凹曲线喷嘴。拐角处和喉段入口处产生的涡流可以指示边界层的分离和过渡,这与我们之前的模拟工作一致。所有工作将为喷头现场应用的设计提供理论支持。收敛角和喉部长度对喷射性能有重要影响,设计时建议设置为15°和3倍喷嘴直径。与锥形直喷嘴相比,喉部长度对流线型喷嘴的流场影响较小,尤其是凹曲线喷嘴。拐角处和喉段入口处产生的涡流可以指示边界层的分离和过渡,这与我们之前的模拟工作一致。所有工作将为喷头现场应用的设计提供理论支持。拐角处和喉段入口处产生的涡流可以指示边界层的分离和过渡,这与我们之前的模拟工作一致。所有工作将为喷头现场应用的设计提供理论支持。拐角处和喉段入口处产生的涡流可以指示边界层的分离和过渡,这与我们之前的模拟工作一致。所有工作将为喷头现场应用的设计提供理论支持。

更新日期:2022-08-05
down
wechat
bug