当前位置: X-MOL 学术Acta Astronaut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanism of shock-train/boundary-layer interaction in spanwise concave isolator channels
Acta Astronautica ( IF 3.1 ) Pub Date : 2022-08-04 , DOI: 10.1016/j.actaastro.2022.07.057
Ziao Wang , Xuanan Xin , Renzhe Huang , Chen Kong , Chengkun Lv , Juntao Chang

A series of spanwise concave channel models of isolators with different radii were investigated to reveal the mechanism of shock train/boundary layer interaction in the inward-turning inlet. Numerical simulations of the shock train flow under different incoming Mach numbers, incoming static pressures, and backpressure ratios were performed. The results show that the shock train leading edge exhibits a “λ” shape in the concave channel, and that a Mach stem is present at the intersection of the shock waves on the top and bottom walls. As the radius of the concave wall is increased, the streamwise force generated by the wall decreases and the upward force perpendicular to the wall increases, which leads to an increase in the thickness of the boundary layer and weakening of the ability of the boundary layer fluid to resist the pressure gradient. Owing to the increase in the radius of the concave channel, the shock train moves upstream, the Mach stem in the shock train leading edge becomes shorter, the distance between the reflection shock waves increases, and the shock train becomes longer. Compared with the concave bottom wall, the separation flow at the flat top wall extends further streamwise. As the incoming Mach number increases, the inertial effect is strengthened, and the shock train evolves towards a normal shock wave structure. As the incoming static pressure decreases, the viscous effect is enhanced, and the flow field of the shock train tends to evolve to reflect more shock waves with compression over longer streamwise distances.



中文翻译:

展向凹形隔离通道中冲击列/边界层相互作用的机制

研究了一系列具有不同半径的隔振器的展向凹形通道模型,以揭示向内转弯入口中冲击链/边界层相互作用的机制。对不同传入马赫数、传入静压和背压比下的冲击列车流动进行了数值模拟。结果表明,激波列前缘在凹形通道中呈现“λ”形,在顶壁和底壁的激波交汇处存在马赫茎。随着凹壁半径的增大,壁面产生的流向力减小,垂直于壁面的向上力增大,导致边界层厚度增加,边界层流体能力减弱以抵抗压力梯度。由于凹形通道半径的增加,激波列逆流而上,激波列前缘的马赫杆变短,反射激波之间的距离增加,激波列变长。与凹形底壁相比,平顶壁处的分离流进一步沿流线延伸。随着传入马赫数的增加,惯性效应增强,激波链向正常激波结构演变。随着输入静压的降低,粘性效应增强,激波列的流场趋向于在更长的流向距离上反射更多的压缩激波。反射激波之间的距离增加,激波列变长。与凹形底壁相比,平顶壁处的分离流进一步沿流线延伸。随着传入马赫数的增加,惯性效应增强,激波链向正常激波结构演变。随着输入静压的降低,粘性效应增强,激波列的流场趋向于在更长的流向距离上反射更多的压缩激波。反射激波之间的距离增加,激波列变长。与凹形底壁相比,平顶壁处的分离流进一步沿流线延伸。随着传入马赫数的增加,惯性效应增强,激波链向正常激波结构演变。随着输入静压的降低,粘性效应增强,激波列的流场趋向于在更长的流向距离上反射更多的压缩激波。并且激波链向正常的激波结构演变。随着输入静压的降低,粘性效应增强,激波列的流场趋向于在更长的流向距离上反射更多的压缩激波。并且激波链向正常的激波结构演变。随着输入静压的降低,粘性效应增强,激波列的流场趋向于在更长的流向距离上反射更多的压缩激波。

更新日期:2022-08-08
down
wechat
bug