当前位置: X-MOL 学术Water Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Trace Iron as single-electron shuttle for interdependent activation of peroxydisulfate and HSO3−/O2 enables accelerated generation of radicals
Water Research ( IF 12.8 ) Pub Date : 2022-08-04 , DOI: 10.1016/j.watres.2022.118935
Huabin Zeng 1 , Yue Cheng 2 , Eveliina Repo 3 , Xin Yu 2 , Xueci Xing 4 , Tao Zhang 5 , Xu Zhao 5
Affiliation  

The generation of reactive oxygen species generally requires initiators in various environmental remediation processes, which necessitates high dosage of activators and downstream treatment for eliminating the accumulation of deactivated catalysts. Herein, a coupled process was constructed using trace iron for simultaneously activating HSO3/O2 system and peroxydisulfate (PDS) oxidation system, where the iron ions (2 mg/L) transferred single-electron from the former system to the latter due to the moderate redox potential (Fe3+/Fe2+, +0.77 V) between the potentials of SO3·−/HSO3 (+0.63 V) and PDS/SO4·− (+2.01 V). Hence, the phenol degradation quickly occurred at a first-order kinetic constant of k1=0.223 min−1 due to the accelerated generation of sulfate radical (SO4·−) and hydroxyl radical (·OH) in the process. The k1 value was almost 6-fold of that in the deoxygenated condition (0.040 min−1). Density function theory reveals that the single electron shuttle spatially separates the electron-donating activation of HSO3 and electron-accepting activation of PDS, while avoiding the “mutual-annihilation” of HSO3 and S2O82− via direct two-electron transfer. Finally, utilizing the in-situ generated electron-shuttle (dissolved iron from cast iron pipe), the HSO3/PDS reagent could efficiently inactivate the chlorine-resistant pathogens and inhibits biofilm regrowth inside the distribution systems at regular intervals or infectious disease outbreak in a neighborhood.



中文翻译:

痕量铁作为单电子穿梭,用于相互依赖的过硫酸盐和 HSO3−/O2 活化,可加速自由基的产生

活性氧的产生通常需要在各种环境修复过程中使用引发剂,这需要高剂量的活化剂和下游处理以消除失活催化剂的积累。在此,使用微量铁构建了一个耦合过程,用于同时激活 HSO 3 - /O 2系统和过氧二硫酸盐 (PDS) 氧化系统,其中铁离子 (2 mg/L) 将单电子从前者系统转移到后者,因为到SO 3 ·- /HSO 3 - (+0.63 V) 和 PDS/SO 4 ·-电位之间的中等氧化还原电位 (Fe 3+ /Fe 2+ , +0.77 V)(+2.01 V)。因此,由于硫酸根(SO 4 ·- )和羟基自由基( · OH)的加速生成,苯酚的降解在k 1 =0.223 min -1的一级动力学常数下迅速发生。k 1值几乎是脱氧条件下(0.040 min -1 )的6倍。密度泛函理论揭示了单电子穿梭在空间上将HSO 3 - 的供电子激活和PDS的受电子激活分开同时避免了HSO 3 -和S 2 O 8的“相互湮灭”。2−通过直接的双电子转移。最后,利用原位产生的电子穿梭(铸铁管中的溶解铁),HSO 3 - /PDS 试剂可以有效地灭活耐氯病原体,并在分配系统内定期或传染病爆发时抑制生物膜再生在一个街区。

更新日期:2022-08-04
down
wechat
bug