当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly Stable and Selective Sensing of Hydrogen Sulfide in Living Mouse Brain with NiN4 Single-Atom Catalyst-Based Galvanic Redox Potentiometry
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2022-08-04 , DOI: 10.1021/jacs.2c04695
Cong Pan 1 , Fei Wu 2, 3 , Junjie Mao 4 , Wenjie Wu 2, 3 , Gang Zhao 2 , Wenliang Ji 1 , Wenjie Ma 2, 3 , Ping Yu 2, 3 , Lanqun Mao 1, 2
Affiliation  

Hydrogen sulfide (H2S) is recognized as a gasotransmitter and multifunctional signaling molecule in the central nervous system. Despite its essential neurofunctions, the chemical dynamics of H2S during physiological and pathological processes remains poorly understood, emphasizing the significance of H2S sensor development. However, the broadly utilized electrochemical H2S sensors suffer from low stability and sensitivity loss in vivo due to sulfur poisoning-caused electrode passivation. Herein, we report a high-performance H2S sensor that combines single-atom catalyst strategy and galvanic redox potentiometry to overcome the issue. Atomically dispersed NiN4 active sites on the sensing interface promote electrochemical H2S oxidation at an extremely low potential to drive spontaneous bipolarization of a single carbon fiber. Bias-free potentiometric sensing at open-circuit condition minimizes sulfur accumulation on the electrode surface, thus significantly enhancing the stability and sensitivity. The resulting sensor displays high selectivity to H2S against physiological interferents and enables real-time accurate quantification of H2S-releasing behavior in the living mouse brain.

中文翻译:

基于 NiN4 单原子催化剂的电化学氧化还原电位法对活体小鼠脑中硫化氢的高度稳定和选择性传感

硫化氢 (H 2 S) 被认为是中枢神经系统中的一种气体递质和多功能信号分子。尽管 H 2 S 具有重要的神经功能,但其在生理和病理过程中的化学动力学仍然知之甚少,这强调了 H 2 S 传感器发展的重要性。然而,由于硫中毒引起的电极钝化,广泛使用的电化学 H 2 S 传感器在体内的稳定性和灵敏度损失较低。在这里,我们报告了一种高性能 H 2 S 传感器,它结合了单原子催化剂策略和电偶氧化还原电位法来克服这个问题。原子分散的 NiN 4传感界面上的活性位点在极低的电位下促进电化学 H 2 S 氧化,从而驱动单根碳纤维的自发双极化。开路条件下的无偏置电位传感可最大限度地减少电极表面的硫积累,从而显着提高稳定性和灵敏度。由此产生的传感器显示出对 H 2 S 对生理干扰物的高选择性,并能够实时准确量化活体小鼠大脑中的 H 2 S 释放行为。
更新日期:2022-08-04
down
wechat
bug