当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hamiltonian Engineering with Multicolor Drives for Fast Entangling Gates and Quantum Crosstalk Cancellation
Physical Review Letters ( IF 8.1 ) Pub Date : 2022-08-04 , DOI: 10.1103/physrevlett.129.060501
K X Wei 1 , E Magesan 1 , I Lauer 1 , S Srinivasan 1 , D F Bogorin 1 , S Carnevale 1 , G A Keefe 1 , Y Kim 1 , D Klaus 1 , W Landers 1 , N Sundaresan 1 , C Wang 1 , E J Zhang 1 , M Steffen 1 , O E Dial 1 , D C McKay 1 , A Kandala 1
Affiliation  

Quantum computers built with superconducting artificial atoms already stretch the limits of their classical counterparts. While the lowest energy states of these artificial atoms serve as the qubit basis, the higher levels are responsible for both a host of attractive gate schemes as well as generating undesired interactions. In particular, when coupling these atoms to generate entanglement, the higher levels cause shifts in the computational levels that lead to unwanted ZZ quantum crosstalk. Here, we present a novel technique to manipulate the energy levels and mitigate this crosstalk with simultaneous off-resonant drives on coupled qubits. This breaks a fundamental deadlock between qubit-qubit coupling and crosstalk. In a fixed-frequency transmon architecture with strong coupling and crosstalk cancellation, additional cross-resonance drives enable a 90 ns CNOT with a gate error of (0.19±0.02)%, while a second set of off-resonant drives enables a novel CZ gate. Furthermore, we show a definitive improvement in circuit performance with crosstalk cancellation over seven qubits, demonstrating the scalability of the technique. This Letter paves the way for superconducting hardware with faster gates and greatly improved multiqubit circuit fidelities.

中文翻译:

用于快速纠缠门和量子串扰消除的多色驱动哈密顿工程

用超导人造原子构建的量子计算机已经超越了经典计算机的极限。虽然这些人造原子的最低能量状态作为量子比特的基础,但更高的能级负责许多有吸引力的门方案以及产生不希望的相互作用。特别是,当耦合这些原子以产生纠缠时,较高的能级会导致计算能级的变化,从而导致不需要的ZZ量子串扰。在这里,我们提出了一种新技术来操纵能级并通过耦合量子比特上的同时非共振驱动来减轻这种串扰。这打破了量子比特-量子比特耦合和串扰之间的基本僵局。在具有强耦合和串扰消除的固定频率传输架构中,额外的交叉谐振驱动可实现 90 ns CNOT,栅极误差为(0.19±0.02)%,而第二组非谐振驱动可以实现新颖的 CZ 门。此外,我们通过超过 7 个量子位的串扰消除显示了电路性能的明确改进,证明了该技术的可扩展性。这封信为具有更快门和大大提高多量子比特电路保真度的超导硬件铺平了道路。
更新日期:2022-08-04
down
wechat
bug