当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tortuosity Engineering for Improved Charge Storage Kinetics in High-Areal-Capacity Battery Electrodes
Nano Letters ( IF 9.6 ) Pub Date : 2022-08-03 , DOI: 10.1021/acs.nanolett.2c02100
Zhengyu Ju 1 , Xiao Zhang 1 , Jingyi Wu 1 , Steven T King 2, 3 , Chung-Chueh Chang 2, 4 , Shan Yan 2, 5 , Yuan Xue 4 , Kenneth J Takeuchi 2, 3, 5, 6 , Amy C Marschilok 2, 3, 5, 6 , Lei Wang 2, 5 , Esther S Takeuchi 2, 3, 5, 6 , Guihua Yu 1
Affiliation  

The increasing demands of electronic devices and electric transportation necessitate lithium-ion batteries with simultaneous high energy and power capabilities. However, rate capabilities are often limited in high-loading electrodes due to the lengthy and tortuous ion transport paths with their electrochemical behaviors governed by complicated electrode architectures still elusive. Here, we report the electrode-level tortuosity engineering design enabling improved charge storage kinetics in high-energy electrodes. Both high areal capacity and high-rate capability can be achieved beyond the practical level of mass loadings in electrodes with vertically oriented architectures. The electrochemical properties in electrodes with various architectures were quantitatively investigated through correlating the characteristic time with tortuosity. The lithium-ion transport kinetics regulated by electrode architectures was further studied via combining the three-dimensional electrode architecture visualization and simulation. The tortuosity-controlled charge storage kinetics revealed in this study can be extended to general electrode systems and provide useful design consideration for next-generation high-energy/power batteries.

中文翻译:

用于改进大面积电池电极中电荷存储动力学的曲折工程

电子设备和电动交通日益增长的需求需要同时具有高能量和功率能力的锂离子电池。然而,由于离子传输路径漫长而曲折,其电化学行为受复杂电极结构的控制仍然难以捉摸,因此高负载电极的倍率能力通常受到限制。在这里,我们报告了电极级曲折工程设计,可改善高能电极中的电荷存储动力学。在具有垂直取向结构的电极中,高面积容量和高倍率容量都可以超出实际的质量负载水平。通过将特征时间与曲折度相关联,定量研究了具有各种结构的电极的电化学性质。通过结合三维电极结构可视化和模拟,进一步研究了由电极结构调节的锂离子传输动力学。本研究揭示的曲折度控制的电荷存储动力学可以扩展到一般电极系统,并为下一代高能/动力电池提供有用的设计考虑。
更新日期:2022-08-03
down
wechat
bug