当前位置: X-MOL 学术IMA J. Numer. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Overlapping Schwarz methods with GenEO coarse spaces for indefinite and nonself-adjoint problems
IMA Journal of Numerical Analysis ( IF 2.1 ) Pub Date : 2022-08-02 , DOI: 10.1093/imanum/drac036
Niall Bootland 1 , Victorita Dolean 2 , Ivan G Graham 3 , Chupeng Ma 4 , Robert Scheichl 5
Affiliation  

Generalized eigenvalue problems on the overlap(GenEO) is a method for computing an operator-dependent spectral coarse space to be combined with local solves on subdomains to form a robust parallel domain decomposition preconditioner for elliptic PDEs. It has previously been proved, in the self-adjoint and positive-definite case, that this method, when used as a preconditioner for conjugate gradients, yields iteration numbers that are completely independent of the heterogeneity of the coefficient field of the partial differential operator. We extend this theory to the case of convection–diffusion–reaction problems, which may be nonself-adjoint and indefinite, and whose discretizations are solved with preconditioned GMRES. The GenEO coarse space is defined here using a generalized eigenvalue problem based on a self-adjoint and positive-definite subproblem. We prove estimates on GMRES iteration counts that are independent of the variation of the coefficient of the diffusion term in the operator and depend only very mildly on variations of the other coefficients. These are proved under the assumption that the subdomain diameter is sufficiently small and the eigenvalue tolerance for building the coarse space is sufficiently large. While the iteration number estimates do grow as the nonself-adjointness and indefiniteness of the operator increases, practical tests indicate the deterioration is much milder. Thus, we obtain an iterative solver that is efficient in parallel and very effective for a wide range of convection–diffusion–reaction problems.

中文翻译:

将 Schwarz 方法与 GenEO 粗空间重叠以解决不定和非自伴问题

重叠上的广义特征值问题(GenEO)是一种计算依赖于算子的谱粗空间与子域上的局部解相结合的方法,以形成一个稳健的椭圆偏微分方程并行域分解预处理器。先前已经证明,在自伴和正定情况下,当用作共轭梯度的预条件子时,该方法产生的迭代次数完全独立于偏微分算子的系数场的异质性。我们将此理论扩展到对流-扩散-反应问题的情况,该问题可能是非自伴和不定的,并且其离散化可以用预处理的 GMRES 解决。此处使用基于自伴随和正定子问题的广义特征值问题定义 GenEO 粗空间。我们证明了对 GMRES 迭代计数的估计,这些估计独立于算子中扩散项系数的变化,并且仅非常温和地依赖于其他系数的变化。这些是在子域直径足够小并且构建粗糙空间的特征值公差足够大的假设下得到证明的。虽然迭代次数估计确实随着算子的非自伴性和不确定性的增加而增加,但实际测试表明恶化要温和得多。因此,我们获得了一个迭代求解器,该求解器并行有效,并且对于广泛的对流-扩散-反应问题非常有效。我们证明了对 GMRES 迭代计数的估计,这些估计独立于算子中扩散项系数的变化,并且仅非常温和地依赖于其他系数的变化。这些是在子域直径足够小并且构建粗糙空间的特征值公差足够大的假设下得到证明的。虽然迭代次数估计确实随着算子的非自伴性和不确定性的增加而增加,但实际测试表明恶化要温和得多。因此,我们获得了一个迭代求解器,该求解器并行有效,并且对于广泛的对流-扩散-反应问题非常有效。我们证明了对 GMRES 迭代计数的估计,这些估计独立于算子中扩散项系数的变化,并且仅非常温和地依赖于其他系数的变化。这些是在子域直径足够小并且构建粗糙空间的特征值公差足够大的假设下得到证明的。虽然迭代次数估计确实随着算子的非自伴性和不确定性的增加而增加,但实际测试表明恶化要温和得多。因此,我们获得了一个迭代求解器,该求解器并行有效,并且对于广泛的对流-扩散-反应问题非常有效。
更新日期:2022-08-02
down
wechat
bug