当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2022-08-03 , DOI: 10.1039/d2ee01094a
Minghui Ning , Fanghao Zhang , Libo Wu , Xinxin Xing , Dezhi Wang , Shaowei Song , Qiancheng Zhou , Yu Luo , Jiming Bao , Shuo Chen , Zhifeng Ren

Electrochemical reconstruction is a powerful tool for generating highly active oxygen evolution reaction (OER) catalysts. Utilizing electrochemical reconstruction to fabricate an OER active catalyst based on a hydrogen evolution reaction (HER) catalyst enables the development of a bifunctional catalyst that possesses state-of-the-art HER and OER activity simultaneously. Here we successfully synthesized Fe-doped Ni&Ni0.2Mo0.8N (Fe0.01-Ni&Ni0.2Mo0.8N) on Ni foam and, after rapid electrochemical reconstruction, the Fe-doped Ni&Ni0.2Mo0.8N compound was reconstructed into NiO co-doped with Fe and Mo (Fe0.01&Mo-NiO). The Fe0.01-Ni&Ni0.2Mo0.8N and Fe0.01&Mo-NiO compounds were found to exhibit state-of-the-art HER and OER performance, respectively. Alkaline fresh water/seawater electrolysis was then systematically studied using the two-electrode electrolyzer Fe0.01-Ni&Ni0.2Mo0.8N‖Fe0.01&Mo-NiO. Due to the excellent seawater HER and OER activity of the individual catalysts, the electrolyzer exhibited record-high performance for seawater electrolysis, achieving a current density of 688 mA cm−2 at 1.7 V. Further experiments under quasi-industrial conditions (6 M KOH & seawater, 60 °C) showed that the electrolyzer delivers a current density of 1000 mA cm−2 at the extremely low voltage of 1.562 V, which is only 1.49% higher than that required for fresh water under the same conditions. Stability testing of the electrolyzer showed that it exhibits good durability over 80 h under the harsh industrial conditions. Therefore, the findings in this research promote the development of bifunctional catalysts and address the small performance differences between alkaline fresh water and seawater electrolysis under industrial conditions.

中文翻译:

通过电化学重建促进高效碱性淡水和海水电解

电化学重建是生成高活性析氧反应 (OER) 催化剂的有力工具。利用电化学重建来制造基于析氢反应 (HER) 催化剂的 OER 活性催化剂,可以开发同时具有最先进的 HER 和 OER 活性的双功能催化剂。在这里,我们在泡沫镍上成功合成了 Fe 掺杂的 Ni&Ni 0.2 Mo 0.8 N (Fe 0.01 -Ni&Ni 0.2 Mo 0.8 N),经过快速电化学重建后,Fe掺杂的 Ni&Ni 0.2 Mo 0.8 N 化合物被重建为与铁和钼 (Fe 0.01 &Mo-NiO)。铁发现0.01 -Ni&Ni 0.2 Mo 0.8 N 和 Fe 0.01 &Mo-NiO 化合物分别表现出最先进的 HER 和 OER 性能。然后使用双电极电解槽Fe 0.01 -Ni&Ni 0.2 Mo 0.8 N‖Fe 0.01 &Mo-NiO系统研究了碱性淡水/海水电解由于单个催化剂具有优异的海水 HER 和 OER 活性,电解槽表现出创纪录的海水电解性能,电流密度达到 688 mA cm -2在 1.7 V。准工业条件下(6 M KOH 和海水,60 °C)下的进一步实验表明,电解槽在 1.562 V 的极低电压下提供 1000 mA cm -2的电流密度,仅为 1.49%高于同等条件下淡水的要求。电解槽的稳定性测试表明,它在恶劣的工业条件下表现出超过 80 小时的良好耐久性。因此,本研究的发现促进了双功能催化剂的发展,并解决了工业条件下碱性淡水和海水电解之间的微小性能差异。
更新日期:2022-08-03
down
wechat
bug