当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural insights into auxin recognition and efflux by Arabidopsis PIN1
Nature ( IF 50.5 ) Pub Date : 2022-08-02 , DOI: 10.1038/s41586-022-05143-9
Zhisen Yang 1 , Jing Xia 1 , Jingjing Hong 2 , Chenxi Zhang 1 , Hong Wei 1 , Wei Ying 1 , Chunqiao Sun 1 , Lianghanxiao Sun 3 , Yanbo Mao 3 , Yongxiang Gao 4 , Shutang Tan 3 , Jiří Friml 5 , Dianfan Li 2 , Xin Liu 1, 6 , Linfeng Sun 1, 6
Affiliation  

Polar auxin transport (PAT) is unique to plants and coordinates their growth and development1,2. The PIN-FORMED (PIN) auxin transporters with remarkable asymmetrical localizations at the plasma membrane drive PAT3,4, however, their structures and transport mechanisms remain largely unknown. Here, we report three inward-facing conformation structures of the major member of the PIN family, PIN1 in Arabidopsis thaliana (AtPIN1): (i) in the apo state, (ii) in the natural auxin, indole-3-acetic acid (IAA)-bound state, and (iii) in complex with the PAT inhibitor N-1-naphthylphthalamic acid (NPA). The transmembrane domain of AtPIN1 shares a conserved NhaA-fold5. In the substrate-bound structure, IAA is coordinated through both hydrophobic stacking and hydrogen bonding. The inhibitor NPA competes with IAA for the same site of the intracellular pocket with a much higher affinity. These findings facilitate our understanding of the substrate recognition and transport mechanisms of PINs, and set up a framework for future research on the directional auxin movement, one of the most crucial processes underlying plant development.



中文翻译:

拟南芥 PIN1 对生长素识别和外排的结构洞察

极地生长素运输 (PAT) 是植物独有的,可协调它们的生长和发育1,2。在质膜上具有显着不对称定位的 PIN 形成 (PIN) 生长素转运蛋白驱动 PAT 3,4,然而,它们的结构和转运机制仍然很大程度上未知。在这里,我们报告了 PIN 家族主要成员的三个面向内的构象结构,即拟南芥中的 PIN1 (PIN1):(i)在 apo 状态,(ii)在天然生长素中,吲哚-3-乙酸(IAA) 结合状态,和(iii)与 PAT 抑制剂N -1-萘基邻苯二甲酸 (NPA) 复合。跨膜结构域PIN1 共享一个保守的 NhaA 折叠5。在底物结合结构中,IAA 通过疏水堆积和氢键进行配位。抑制剂 NPA 与 IAA 以更高的亲和力竞争细胞内袋的同一位点。这些发现有助于我们理解 PIN 的底物识别和转运机制,并为未来研究定向生长素运动(植物发育的最关键过程之一)建立了框架。

更新日期:2022-08-03
down
wechat
bug