当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase-Controlled Synthesis of Nickel-Iron Nitride Nanocrystals Armored with Amorphous N-Doped Carbon Nanoparticles Nanocubes for Enhanced Overall Water Splitting
Small ( IF 13.0 ) Pub Date : 2022-07-31 , DOI: 10.1002/smll.202203042
Mingyu Chen 1, 2 , Ying Liu 1 , Jiayao Fan 1, 3 , Bingxue Liu 1 , Naien Shi 2 , Yue Lin 3 , Xianzeng Li 1, 2 , Wenqi Song 1 , Dongdong Xu 1 , Xiangxing Xu 1 , Min Han 1, 2, 4
Affiliation  

Transition metal nitrides (TMNs) nanostructures possess distinctive electronic, optical, and catalytic properties, showing great promise to apply in clean energy, optoelectronics, and catalysis fields. Nonetheless, phase-regulation of NiFe-bimetallic nitrides nanocrystals or nanohybrid architectures confronts challenges and their electrocatalytic overall water splitting (OWS) performances are underexplored. Herein, novel pure-phase Ni2+xFe2−xN nanocrystals armored with amorphous N-doped carbon (NC) nanoparticles nanocubes (NPNCs) are obtained by controllable nitridation of NiFe-Prussian-blue analogues derived oxides/NC NPNCs under Ar/NH3 atmosphere. Such Ni2+xFe2−xN/NC NPNCs possess mesoporous structures and show enhanced electrocatalytic activity in 1 m KOH electrolyte with the overpotential of 101 and 270 mV to attain 10 and 50 mA cm–2 current toward hydrogen and oxygen evolution reactions, outperforming their counterparts (mixed-phase NiFe2O4/Ni3FeN/NC and NiFe oxides/NC NPNCs). Remarkably, utilizing them as bifunctional catalysts, the assembled Ni2+xFe2−xN/NC||Ni2+xFe2−xN/NC electrolyzer only needs 1.51 V cell voltage for driving OWS to approach 10 mA cm–2 water-splitting current, exceeding their counterparts and the-state-of-art reported bifunctional catalysts-based devices, and Pt/C||IrO2 couples. Additionally, the Ni2+xFe2−xN/NC||Ni2+xFe2−xN/NC manifests excellent durability for OWS. The findings presented here may spur the development of advanced TMNs nanostructures by combining phase, structure engineering, and hybridization strategies and stimulate their applications toward OWS or other clean energy fields.

中文翻译:

用无定形 N 掺杂碳纳米粒子纳米立方体铠装的镍-铁氮化物纳米晶体的相控合成用于增强整体水分解

过渡金属氮化物(TMNs)纳米结构具有独特的电子、光学和催化性能,在清洁能源、光电子和催化领域具有广阔的应用前景。尽管如此,NiFe-双金属氮化物纳米晶体或纳米混合结构的相位调节面临挑战,并且它们的电催化整体水分解 (OWS) 性能尚未得到充分探索。在此,通过在 Ar 下可控氮化 NiFe-普鲁士蓝类似物衍生的氧化物/NC NPNCs,获得了新型纯相 Ni 2+ x Fe 2− x N 纳米晶体,其包裹有无定形 N 掺杂碳 (NC) 纳米粒子纳米立方体 (NPNCs) /NH 3大气。这样的Ni 2+ x Fe 2− xN/NC NPNCs 具有介孔结构,在 1  m KOH 电解质中表现出增强的电催化活性,过电位分别为 101 和 270 mV,以实现 10 和 50 mA cm -2的电流对氢和氧的析出反应,优于其对应物(混合相 NiFe 2 O 4 /Ni 3 FeN/NC 和 NiFe 氧化物/NC NPNCs)。值得注意的是,将它们用作双功能催化剂,组装好的 Ni 2+ x Fe 2− x N/NC||Ni 2+ x Fe 2− x N/NC 电解槽仅需 1.51 V 电池电压即可驱动 OWS 接近 10 mA cm – 2水分解电流,超过了它们的对应物和最新报道的基于双功能催化剂的装置,以及 Pt/C||IrO 2对。此外,Ni 2+ x Fe 2− x N/NC||Ni 2+ x Fe 2− x N/NC 对 OWS 表现出优异的耐久性。本文提出的研究结果可能会通过结合相、结构工程和杂交策略来促进先进 TMN 纳米结构的发展,并刺激它们在 OWS 或其他清洁能源领域的应用。
更新日期:2022-07-31
down
wechat
bug