当前位置: X-MOL 学术J. CO2 Util. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation of an industrial scale scCO2 beam dyeing process
Journal of CO2 Utilization ( IF 7.2 ) Pub Date : 2022-08-01 , DOI: 10.1016/j.jcou.2022.102147
Ludovica Beatrice Chiango , Antonio Buffo , Marco Vanni , Vincent Nierstrasz , Ada Ferri

An industrial dyeing process in supercritical carbon dioxide has been modelled with computational fluid dynamics using Ansys Fluent software. In order to investigate the distribution of the dye carrier fluid, the flow resistance of the fabric has been accurately characterised. For this purpose, in the first part of the work a plain-woven fabric geometry was created in the open software Tex-Gen and modelled in Ansys Fluent to predict the permeation of fluid through the pores of the fabric material and to estimate the relationship between local fluid velocity and pressure drop. The second part of the study focused on evaluating the influence of beam structure, inlet flow rate, fabric height on the fluid flow through the fabric, which must be uniform to achieve a homogeneous level of dyeing. From the simulations the main obstacle to achieving a uniform flow velocity in the fabric is the pressure rise that occurs in the beam and creates a slight difference in permeation velocity between the two axial ends of the fabric; other disturbances, such as the effect of the perforated structure of the beam, are usually minor. Due to the low viscosity of supercritical carbon dioxide, inertial losses predominate over viscous losses in the porous medium. This means that approaches based only on the permeability of the fabric and the application of Darcy's law are inadequate to correctly predict the response of a dyeing unit when using carbon dioxide.



中文翻译:

工业规模 scCO2 束染色工艺的模拟

使用 Ansys Fluent 软件通过计算流体动力学对超临界二氧化碳中的工业染色过程进行了建模。为了研究染料载液的分布,已经准确地表征了织物的流动阻力。为此,在工作的第一部分中,在开放软件 Tex-Gen 中创建了平织织物几何形状,并在 Ansys Fluent 中进行建模,以预测流体通过织物材料孔隙的渗透,并估计两者之间的关系。局部流体速度和压降。研究的第二部分侧重于评估束结构、入口流速、织物高度对通过织物的流体流动的影响,这些流体流动必须均匀以达到均匀的染色水平。从模拟来看,在织物中实现均匀流速的主要障碍是光束中发生的压力升高,并在织物的两个轴向端之间产生微小的渗透速度差异。其他干扰,例如梁的穿孔结构的影响,通常很小。由于超临界二氧化碳的低粘度,惯性损失在多孔介质中比粘性损失占优势。这意味着仅基于织物渗透性和达西定律应用的方法不足以正确预测使用二氧化碳时染色装置的响应。例如梁的穿孔结构的影响,通常是次要的。由于超临界二氧化碳的低粘度,惯性损失在多孔介质中比粘性损失占优势。这意味着仅基于织物渗透性和达西定律应用的方法不足以正确预测使用二氧化碳时染色装置的响应。例如梁的穿孔结构的影响,通常是次要的。由于超临界二氧化碳的低粘度,惯性损失在多孔介质中比粘性损失占优势。这意味着仅基于织物渗透性和达西定律应用的方法不足以正确预测使用二氧化碳时染色装置的响应。

更新日期:2022-08-01
down
wechat
bug