当前位置: X-MOL 学术Case Stud. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparison of barrel-shaped fixed bed drying for different ventilation methods by mathematic simulation
Case Studies in Thermal Engineering ( IF 6.8 ) Pub Date : 2022-07-30 , DOI: 10.1016/j.csite.2022.102312
Jianchun Yan , Hai Wei , Zhaoyan You , Huichang Wu , Huanxiong Xie

Unsteady one-dimensional partial differential equations for heat and mass transfer in peanut drying are used in mathematical simulations to compare the drying performance of a barrel-shaped bed in three ventilation modes: bottom up, inside out and outside in. Results obtained using the finite difference scheme show that the mathematical simulation reliably predicts the drying process of peanuts, and that the drying delay of bottom-up ventilation is the most significant at the beginning of drying. This is because the drying enhancement afforded by the high average velocity of air along the ventilation direction is insufficient to offset the drying delay caused by the large ventilation thickness compared with that afforded by the inside-out and outside-in ventilation. Furthermore, as the air volume flow increases, the time consumption and moisture content difference decrease, whereas the productivity, energy consumption, and uniformity increase for all three ventilation modes, consistent with the classical ventilation drying law. Under the same air volume flow, the time and energy consumptions for the bottom-up ventilation are the lowest, followed by those for the outside-in and inside-out ventilation. The productivity afforded by the bottom-up ventilation is the highest, followed by that by the outside-in and inside-out ventilation. The outside-in ventilation indicates the least moisture content difference and the best drying uniformity. Meanwhile, the inside-out ventilation indicates the most significant moisture content difference and the worst drying uniformity.



中文翻译:

不同通风方式下桶形固定床干燥的数学模拟比较

花生干燥过程中传热传质的非定常一维偏微分方程用于数学模拟,以比较桶形床在三种通风模式下的干燥性能:自下而上、由内向外和由外向内。结果使用有限差分方案表明,数学模拟可靠地预测了花生的干燥过程,自下而上通风的干燥延迟在干燥开始时最为显着。这是因为与由内向外和由外向内的通风相比,空气沿通风方向的高平均速度所提供的干燥增强不足以抵消由于通风厚度大而导致的干燥延迟。此外,随着风量的增加,时间消耗和水分含量差异减少,而所有三种通风模式的生产率、能耗和均匀度增加,与经典通风干燥法一致。在相同的风量下,自下而上的通风时间和能耗最低,其次是由外向内和由内向外的通风。自下而上通风的生产率最高,其次是由外向内和由内向外的通风。由外向内通风表明水分含量差异最小,干燥均匀性最好。同时,由内向外通风表明水分含量差异最显着,干燥均匀性最差。所有三种通风模式的均匀性增加,与经典通风干燥法一致。在相同的风量下,自下而上的通风时间和能耗最低,其次是由外向内和由内向外的通风。自下而上通风的生产率最高,其次是由外向内和由内向外的通风。由外向内通风表明水分含量差异最小,干燥均匀性最好。同时,由内向外通风表明水分含量差异最显着,干燥均匀性最差。所有三种通风模式的均匀性增加,与经典通风干燥法一致。在相同的风量下,自下而上的通风时间和能耗最低,其次是由外向内和由内向外的通风。自下而上通风的生产率最高,其次是由外向内和由内向外的通风。由外向内通风表明水分含量差异最小,干燥均匀性最好。同时,由内向外通风表明水分含量差异最显着,干燥均匀性最差。其次是由外向内和由内向外的通风。自下而上通风的生产率最高,其次是由外向内和由内向外的通风。由外向内通风表明水分含量差异最小,干燥均匀性最好。同时,由内向外通风表明水分含量差异最显着,干燥均匀性最差。其次是由外向内和由内向外的通风。自下而上通风的生产率最高,其次是由外向内和由内向外的通风。由外向内通风表明水分含量差异最小,干燥均匀性最好。同时,由内向外通风表明水分含量差异最显着,干燥均匀性最差。

更新日期:2022-07-30
down
wechat
bug