当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting Energy Storage Performance of Lead-Free Ceramics via Layered Structure Optimization Strategy
Small ( IF 13.3 ) Pub Date : 2022-07-30 , DOI: 10.1002/smll.202202575
Fei Yan 1 , Hairui Bai 1 , Guanglong Ge 1 , Jinfeng Lin 1 , Kun Zhu 1 , Guohui Li 1 , Jin Qian 1 , Bo Shen 1 , Jiwei Zhai 1 , Zhifu Liu 2
Affiliation  

Owing to the current global scenario of environmental pollution and the energy crisis, the development of new dielectrics using lead-free ceramics for application in advanced electronic and energy storage systems is essential because of the high power density and excellent stability of such ceramics. Unfortunately, most of them have low breakdown strength and/or low maximum polarization, resulting in low energy density and efficiency. To overcome this limitation here, lead-free ceramics comprising a layered structure are designed and fabricated. By optimizing the distribution of the layered structure, a large maximum polarization and high applied electric field (>500 kV cm−1) can be achieved; these result in an ultrahigh recoverable energy storage density (≈7 J cm−3) and near ideal energy storage efficiency (≈95%). Furthermore, the energy storage performance without obvious deterioration over a broad range of operating frequencies (1–100 Hz), working temperatures (30–160 °C), and fatigue cycles (1–104). In addition, the prepared ceramics exhibit extremely high discharge energy density (4.52 J cm−3) and power density (405.50 MW cm−3). Here, the results demonstrate that the strategy of layered structure design and optimization is promising for enhancing the energy storage performance of lead-free ceramics.

中文翻译:

通过层状结构优化策略提高无铅陶瓷的储能性能

由于当前全球环境污染和能源危机的情况,开发使用无铅陶瓷的新型电介质用于先进的电子和储能系统是必不可少的,因为这种陶瓷具有高功率密度和出色的稳定性。不幸的是,它们中的大多数具有低击穿强度和/或低最大极化,导致低能量密度和效率。为了克服这里的这一限制,设计和制造了包含层状结构的无铅陶瓷。通过优化层状结构的分布,可以获得较大的最大极化和高施加电场(>500 kV cm -1);这些导致超高的可恢复能量存储密度(≈7 J cm -3)和接近理想的储能效率(≈95%)。此外,在很宽的工作频率(1-100 Hz)、工作温度(30-160°C)和疲劳循环(1-10 4 )范围内,储能性能没有明显恶化。此外,制备的陶瓷表现出极高的放电能量密度(4.52 J cm -3)和功率密度(405.50 MW cm -3)。在这里,结果表明层状结构设计和优化策略有望提高无铅陶瓷的储能性能。
更新日期:2022-07-30
down
wechat
bug